

-

FLM Developer Guide

Version History
Version Date Reason for update

1 10/10/2007 Initial release of the document
2 7/7/2008 Combining Starter Guide, Dev Guide, and Advanced Functions

290 08.09.08 Updating to Version 290

File: FLM 290 - Developer Guide Page 2 of 76 09/09/2008

Table of Contents

1 Preliminary form creation tasks .. 4
1.1 Define Form Statuses ..4
1.2 Define Form Actions ...4
1.3 Define Form Categories ...5

2 First Form Tutorial .. 6
2.1 Creating the Data Definition of a Form in SAPGUI ..6
2.2 Designing the layout in Adobe Designer ..8
2.3 Adding Business Logic..9
2.4 Form Routing.. 10
2.5 Launching the form in the portal .. 12

3 Creating a Form Data Schema in the Wizard..14
3.1 Specify Form Type Details .. 15
3.2 Form Data Structure ... 16
3.3 Specify Location for XML Data Definition File ... 19
3.4 Alternate Adobe Designer Templates ... 19
3.5 Form Options.. 20
3.6 Summary ... 21

4 Field User-exits ...22
4.1 Field-level prepopulation ... 23
4.2 F4 Possible entries ... 23
4.3 Derivation.. 24
4.4 Substitution ... 25
4.5 Validation.. 26

5 Form User-exits ...27
5.1 Form-level pre-population .. 27
5.2 E-mail address derivation ... 29
5.3 Workflow (FLM Routing Server) .. 30
5.4 Version ... 30
5.5 Language... 30
5.6 Indexing.. 31
5.7 Enqueue/Dequeue.. 31

6 Default Form...31
6.1 Maintain Default Form... 31
6.2 Preview Default Form.. 31

7 Form Template and Package Handling ...32
7.1 Exporting and Importing Form Packages.. 32

8 Form Routing, Configuration and Email Setup..33
8.1 Form Routing.. 33
8.2 Form Status Determination ... 34
8.3 E-mail Reminder Settings ... 35
8.4 E-mail Settings .. 37
8.5 Define Approved Email Addresses ... 37

9 IMG Execution Tools..38
9.1 System Log .. 38
9.2 Preview Default Form.. 38
9.3 ADS Performance testing .. 38
9.4 List CMS Documents .. 39

10 Form Posting Engine (FPE)..39
10.1 Processing Control .. 40
10.2 Valid FPE status. .. 40
10.3 FPE function control.. 41
10.4 Process Functions ... 42
10.5 Invoking FPE ... 44
10.6 Posting adapter coding... 45

File: FLM 290 - Developer Guide Page 3 of 76 09/09/2008

11 FLM Routing Server...48
11.1 Using the Routing Tables for Form Submission... 48
11.2 FLM Routing Server for triggering Off-line forms. ... 51
11.3 FLM Routing Server for Form Escalation. ... 52
11.4 FLM Routing Server for Reminder E-mails... 53
11.5 Portal task instructions .. 54

12 Correspondence Generation ...55
12.1 Developing a letter template and texts... 56

13 Form Structure..57
13.1 Data hierarchy... 57
13.2 Subform definition and binding... 58
13.3 Subform look and feel hints and tips. ... 60

14 Index of methods for form data handling..61
14.1 Get the complete address details from an address number ... 61
14.2 Get the complete address details from a partner number ... 61
14.3 Get e-mail address from partner number... 61
14.4 Get address from address number into single text field ... 61
14.5 Get standard text into single text field ... 63
14.6 Prepopulate field within a subform.. 63
14.7 Add parent paths to form data xml table... 63
14.8 Get HR Personnel number from user id ... 63
14.9 Get User ID from HR Personnel number ... 64
14.10 Get E-mail address from user id.. 64
14.11 Get E-mail address from HR Personnel number.. 64
14.12 Navigate HR organisational structure.. 64
14.13 Get previous form owner .. 65
14.14 Get previous form actioner ... 65
14.15 Get form name .. 66
14.16 Get form current owner ... 66
14.17 Get form current status ... 66

15 Javascript Samples ...67
15.1 Add a row [Javascript] ... 67
15.2 Remove a row [Javascript] .. 67
15.3 Remove a specific row [Javascript] .. 68
15.4 FLM ‘Submit’ button [Javascript] .. 68
15.5 FLM ‘Check’ button [Javascript] ... 68
15.6 Total fields within a subform [Javascript] .. 69
15.7 Total the same field for a repeating subform [Javascript]... 69
15.8 Count the number of rows in a subform .. 69
15.9 Hide a field if there is no data within it .. 70
15.10 Fill the fields of one drop-down list depending on the value selected of another drop-down list. . 70
15.11 Lock Down Elements on a form... 72
15.12 Calculate Difference between Two Dates .. 72
15.13 Validate a Date.. 73
15.14 Set Focus on a Field .. 73
15.15 Use Document Variables ... 73

16 Web Services ..74
16.1 Designer-based web services.. 74
16.2 FLM-based Web Services... 74

File: FLM 290 - Developer Guide Page 4 of 76 09/09/2008

1 Preliminary form creation tasks

For each form you will need to have the required statuses, actions and categories set up.
This may have already been done for past form development, but it is worth checking so
that you can create extra categories if necessary.

1.1 Define Form Statuses

This section displays all the available statuses that can be assigned to each form. A
separate status is available according to customer code, description and category.

Form statuses refer to the stage of the workflow, or routing, that the form is in at any one
time.

An initial status defines a form at the first stage of a routing, i.e. initial.

An intermediate status defines a form in the middle stages of a routing, e.g. approved,
rejected, submitted, or approved

A final status defines the form at the end of a routing, e.g. End Of Routing

All statuses displays all available statuses

You can create a new form status tag by going to the ‘new entries’ menu and entering new
criteria for customer code, status code, description, and category. Once this new status
has been created in this activity, it will then become available to select in the routing
configuration table (see 1.3.2)

1.2 Define Form Actions

Form Actions list the options available to select the next position in the form routing, e.g.
submit, approve, post etc. You can enter a new action by going to ‘new entries’ and

File: FLM 290 - Developer Guide Page 5 of 76 09/09/2008

entering a customer code, action code and description for each new action. Actions Y and
Z are reserved and cannot be reassigned. All other letters of the alphabet are available to
assign to different stages of a workflow as you wish. The stage names themselves are only
suggestions and are completely customisable.

1.3 Define Form Categories

In this activity you define the set of available Form Categories in your system. A Form
Category is a logical grouping of Form Types that is used as a part of the user authorisation
concept in FLM. You must define your form categories before you can begin creating
logical forms via the FLM Form Wizard, as each form must be assigned to a 2-character
category.

The groupings shown in the demo below are examples of typical form categories:
‘Purchasing’ ‘Human Resources’ and ‘Accounting’.

File: FLM 290 - Developer Guide Page 6 of 76 09/09/2008

To create a new form category, go to ‘New Entries’ and define a two-character form
category code with an associated description for each form category required. Form
Category codes are only applicable for the customer code within which they were set up.

2 First Form Tutorial

This section is aimed towards a beginner designing his first form. Although it is helpful for
you to be familiar with SAP and Adobe Designer, it should be possible for anyone to follow
the step-by-step instructions given here and create your first FLM form and get a feel for
the processes involved. Further information on the functions referred to in this section are
contained in the later sections of this document.

The aims of this exercise are to:

- Create a new form data definition using the FLM form wizard
- Combine the data definition with the form template to create a working Interactive

Form
- Enter the required UserExit code to prepopulate, create a dropdown menu, and

validate fields on the form
- Launch the finished form in the FLM portal and test it.

Exercise Prerequisites:

- FLM installed on the system
- Customer code initialised
- Form Status, Action and Category codes created.
- Message 996 set up
- Message ‘Form submitted for approval’ set up e.g. as number 100
- Users 1 and 2 configured

2.1 Creating the Data Definition of a Form in SAPGUI

The form data definition is done in the SAP IMG.

Go to Cross-Application Components> General Application Functions> Forms Lifecycle
Manager> Interactive Forms> Setup Forms> Form Wizard.

The Form Wizard will open:

1. Click Continue.
2. Enter a 4-character form character code (e.g. TEST),

Leave version number as 00, language and form description and Continue. N.B.
the form description can only contain letters, numbers and spaces; no special
characters.

3. Launch the Form Data Designer.
a. Begin by creating a subform in the region shown. Call it ‘subform_1’ with

a MaxOccurs of 1 with ROOT as the parent. Click ‘add subform’ and it
will appear in the table on the right.

File: FLM 290 - Developer Guide Page 7 of 76 09/09/2008

MaxOccurs facility allows you to set the maximum number of times
items on a subform can be repeated using the + and – buttons on the
form.

b. Repeat this process for two more subforms: subform_2 with MaxOccurs:
10 and Parent: ROOT and subform_3 with MaxOccurs: 1 and Parent:
ROOT

4. Now go to the Form Fields Tab.
a. The first field, for the sake of this example, will be called ‘prepop’, of

type ‘numc’ and parent ‘subform_1’. Check the tickbox to ‘add
prepopulation routine’. Finally click ‘Add’ and it will appear in the field
table.

b. Next, create two more fields, called ‘Dropdown_1’ and ‘Dropdown_2’,
type: ‘CHAR’ and with parent: ‘Subform_2’. Check the box to add an F4
values routine to both.

c. Create a fourth field, called ‘validation’, type = NUMC and parent =
subform_3

d. Finally, Return to FLM Wizard.

5. FLM automatically creates a directory on your computer in which to store the
finished form file. Continue.

6. We will be using the standard FLM template for this exercise, so Continue.
7. Check Online transport and select a Category from the dropdown and Continue.
8. Continue to begin form code generation.

9. Click the to complete the process or create a new customizing request. E.g.
“John’s First Form”

File: FLM 290 - Developer Guide Page 8 of 76 09/09/2008

2.2 Designing the layout in Adobe Designer

Once the form’s data definition has been created, open your form template in Adobe
Designer. It will be in the C:/FLM/Form Templates folder and have the format: FLM _[3-
digit customer code]_[4-digit form code]_E_[version number]. E.g. FLM_ZZZ_TEST_E_00

1. Go to File> New Data Connection
2. Select ‘get data connection from XML schema’ and Next.
3. Open the directory and select the FLM form. It will have a file name of

FLM_FORM_DATA_[3-digit customer code]_[4-digit form code]_E_[version
number]

4. Check ‘embed XML schema’ and Finish.

The Data View tab now contains the schema you defined in the FLM wizard.
Subform_1 will correspond to the ‘Header’ field on the template, Subform_2
corresponds to ‘Items’ and Subform_3 corresponds to ‘Footer’. ‘FLM_Action’
and ‘FLM_Return’ are required by the system so are generated automatically.

5. The next step is to drag-and-drop the fields in the Data View onto the
corresponding form fields. Do not drag-and-drop the subforms.

a. Drag ‘Prepop’ onto the subform marked ‘Header Fields’

File: FLM 290 - Developer Guide Page 9 of 76 09/09/2008

b. Drag ‘Dropdown_1’ and ‘Dropdown_2’ onto the ‘Item Fields’ subform
c. Drag ‘Validation’ onto the ‘Footer Fields’ subform

When the fields are successfully bound, the icon will appear next to
that item in the Data View.

6. FLM_ACTION should be dragged and dropped onto the dropdown field next to
the ‘Send’ button. FLM_RETURN corresponds to the blank box on the left of the
ACTION field as shown.

7. You will need to create a drop-down chevron for both the dropdown fields on
the form. To do this, select the required fields and click on the field type on
the right-hand side. Select ‘drop down list’ from the options.

8. Click in the text boxes denoting the field names. Rename ‘Prepop’ to
‘Prepopulated’ and replace the underscores in the dropdown field names with
spaces.

The names of the fields in the data view and in the FLM system do not
change when you change the field descriptions on the form, so your field
descriptions are not limited by the character and length restrictions in the
data designer. It is advisable to keep the data designer names and field
descriptions similar or have a system for field nomenclature when working
with long forms.

9. In order to ensure that the form functions correctly, you will need to bind the
subforms on the template to the subforms you created in the Form Wizard. To
do this, return to the Hierarchy tab and under ‘DataFlow’, select the Header
field. In the Object> Binding menu on the right, select the default binding to

SUBFORM_1 by clicking on the under the default binding and going to
DataConnection> SUBFORM_1 as shown.

10. Repeat the process for the ‘Items’ and ‘Footer’ subforms.
11. Save the form and exit Adobe Designer.

2.3 Adding Business Logic

After working on the form in Adobe Designer we need to upload it back into FLM so we can
add the business logic.

Return to SAP transaction SPRO IMG>Cross Application Components> General Application
Functions> Forms Lifecycle Manager and go to ‘Upload Form Template’

Select the .XDP file you have just been working with. Click the ‘Execute’ icon on the top-
left of the page. Confirm the following prompts with Yes.

Now that the form is back in we do the following.

1. Go into Field UserExits under business logic from the IMG menu.
2. You will receive a prompt to enter the form type code you are working with.

Enter ‘TEST’ and click ‘Continue’
3. The screen shows a list of the fields that were assigned UserExits in the data

designer, by category in the Form Wizard. To summarise:

File: FLM 290 - Developer Guide Page 10 of 76 09/09/2008

‘Dropdown_1’ and ‘Dropdown_2’ were assigned an F4 values routine
‘Prepop’ was assigned a prepopulation routine
‘Validation’ was assigned a validation routine.

To edit the UserExit code Preopoluates the form. Click on the PrePopulation

tab, select the required field and then click the button.

Enter the following code into the space denoted by
<<<< Start of Customer code >>>> and <<<< End of Customer Code >>>>
as before:

ex_value = '12345'.

This code will prepopulate the field with the value ’12,345’. As with the F4
code, any ABAP code can be entered here to prepopulate the field.

Click Save and then confirm.

Activate the code using the tool as before and then exit .

4. Follow the same procedure for the Dropdown boxes and for Validation. The
UserExits contain code you can uncomment. The Form will still run even if the
UserExits are left blank.

2.4 Form Routing

Here we will setup a simple routing for the form:

This routing can be represented by a table of actions:

File: FLM 290 - Developer Guide Page 11 of 76 09/09/2008

User

Form Status Action New User New Status

Initial user
(User 1)

Initial Submit Approver
(User 2)

Submitted

Approver
(User2)

Submitted Approve System

Approved

Approver
(User 2)

Submitted Reject Initial user
(User 1)

Rejected

Initial user
(User 1)

Rejected Submit Approver
(User 2)

Submitted

Initial user
(User 1)

Rejected Cancel System Cancelled

To configure this workflow into FLM, first go into Interactive Forms > Setup Form Routing >
Form Status Determination from the IMG menu

1. Select the name of the form you are working with from the list and double-click
on ‘Workflow Status’ at the top-left of the screen.

2. From the second, third and fifth columns of the routing table above we can
derive the following other actions:

Submitted Approve = End of life
Submitted Reject = Rejected
Rejected Submit = Submitted
Rejected Cancel = Cancelled

Go to ‘New Entries’ and enter the above status processes into the table as
shown below. When you have fininshed click the ‘Save’ and Save the data into
the correct Customizing Request for that form.

This table can be used for more advanced routing configurations, e.g. email
reminders and version variations, so it has a number of options that we won’t
use for the sake of this example.

3. Next, go into ‘Routing Status Table’ from the IMG menu.
4. Select the form type you want to work with from the table and open its routing

table from the menu on the left to configure the form user routing by entering
the information as follows, substituting in the corrent Customer Code, Ftype,
User, etc... for your form. Click the Save icon and attach it to the correct
request.

File: FLM 290 - Developer Guide Page 12 of 76 09/09/2008

SYSTEM’ is not a configured user, however it is used here to transfer ownership
of the form from the user who submitted it and hence remove it from their
inbox. The form will be stored in the system without an ‘owner’, ready for any
subsequent actions, such as data posting, to be applied to it.

2.5 Launching the form in the portal

Launch the FLM portal in a browser using the URL:

http://yourserver:50100/webdynpro/dispatcher/flm.com/flmgui/flmportal

The port for your server may be different.(e.g. 50300).

5. Login as the first user in the routing (USER1).
6. Go to Tasks and then New Form
7. Click on the form category ‘TEST’ to which the form was assigned, scroll down

through the list using the button to the form you created and click on it. It
will launch in the browser.

8. When the form launches, the ‘Prepopulated’ field should contain the value
’12,345’, as determined by the UserExit code you entered

9. Select ‘Submit’ and click ‘Send’ to send the form to the next user in the
routing.

10. The form will be submitted, and a confirmation message will appear on the
screen

11. If you have the login details of the next user in the routing, you can check that
the form was routed successfully to them, as specified in the routing table. To
do this, first , then enter the login details of the next user

12. Go to Tasks> Inbox and the form you have just submitted should appear in the
listing, with status ‘Submitted’, created by USER1 with today’s date on it. Click
on the form to open it.

http://yourserver:50100/webdynpro/dispatcher/flm.com/flmgui/flmportal

File: FLM 290 - Developer Guide Page 13 of 76 09/09/2008

13. You can decide whether to approve or reject the form. Rejecting it will return
it to User 1; approving it will change its status to ‘Approved’, which can then be
input as a valid status for posting to SAP by the Forms Posting Engine.

Congratulations! You have just successfully created and tested your first FLM form. For a
more complete example see the FLM Forms Tutorial.

File: FLM 290 - Developer Guide Page 14 of 76 09/09/2008

3 Creating a Form Data Schema in the Wizard

Create the logical definition of a new interactive form, including field names, field types
and form templates. This section will take you through an example form creation to
explain all the processes involved. The process accesses some

On the welcome page, click ‘Continue’ to begin creating your form.

File: FLM 290 - Developer Guide Page 15 of 76 09/09/2008

3.1 Specify Form Type Details

This section of the form wizard defines how the form will be identified within SAP. Each
form is defined by a four-character code, version number and language. You can enter a
short description and long description of the form here.

1. Form type code.

Invent a form type code here: the first two letters define the application area while
the second two denote the form’s function. For example, a sales order form may have
the code SAOR. It is a good idea to decide and agree on a universal form naming system
so that each form code accurately describes the form’s application area and function.
This will be helpful, for example when managing form routings.

2. Version.

One of the features of FLM is the support of concurrent form versions. So it is possible
to create a form with the same function and 4-character code, but with a different
version number. This facilitates forms management, because the 4-digit character code
can be fixed for a specified form type and application, and does not need to be altered
with successive versions of the form.

Use this field to enter the version number of the form.

3. Language.

Each form must be generated in English before a copy can be made in another
language. Once a form has been designed in English though, any language can be
selected for a successive version of the form. Note that in a new language version, the
data designer cannot be edited and is a read-only version of that created for the
English form.

File: FLM 290 - Developer Guide Page 16 of 76 09/09/2008

4. Form Description

Enter a short and long description of the form to easily identify it in the forms list.

3.2 Form Data Structure

Launch form data designer at this stage of the wizard to input the required fields and
subforms.

3.2.1 Subforms

Begin the new form creation by creating a Subform. This is a logical or physical grouping of
fields that defines their characteristics on the form. It is a feature of Adobe interactive
forms that some fields may be copied according to how many times it is required. For
example, on a sales order form, an item description/quantity field may be copied
according to the number of discrete items to be ordered.

However it would be undesirable for some fields, for example ‘name’ and ‘address’ to be
allowed to appear more than once on the form. MaxOccurs allows you to set the maximum
number of times a subform field may occur on the form. Following the same example, it
would be advisable to set Header fields as MaxOccurs: 1, and Item fields as Maxoccurs: 10.
When these fields are eventually created, they can then be assigned to the relevant
subform group to maximize the functionality of the fields according to requirements.

File: FLM 290 - Developer Guide Page 17 of 76 09/09/2008

3.2.2 Fields

To create a field, begin by entering the field name in the ‘Field’ section of the page. The
Field Type can be assigned as character, numeric, date etc. The field can then be assigned
to one of the subforms you have created under ‘Parent’. Please note that the field name
must consist of alphanumeric characters only; underscores are allowed but spaces are not.
Though the field names should resemble their content, they need not be the label of the
field as it will appear on the form. This is done via form design at a later stage.

File: FLM 290 - Developer Guide Page 18 of 76 09/09/2008

3.2.2.1 Field Types

CHAR – Character field; will allow free text to be input to the field

NUMC – Numeric field; only numeric characters are allowed.

DATE – Date field

TIME – Only allows times to be input

BOOL – Checkbox; will produce a labelled checkbox which can either be ticked or unticked.

3.2.2.2 Read and Post Routines

Read and Post routines can be assigned to each field:

Read Routines

Read Routines will apply to the field in any reading instance of the form.

A Prepopulation Routine will cause the field to be prepopulated and will not be amendable
by the form user. This could be used, for example, for the Form ID field.

File: FLM 290 - Developer Guide Page 19 of 76 09/09/2008

An F4 Values Routine limits the field input to options selected from a drop-down menu.
This could be used in the case of there being a limited number of field options to select
from, such as Country of Residence.

A Sticky dropdown will retain the values populated into it at the first render throughout its
routing.

If the Sticky function is not enabled, the form will re-render using live data at a later stage
of the routing, which may mean that an approver may not have access to the same
dropdown data as the initiator who accessed the form, say, a couple of days previously. If
live data is always required, DO NOT enable a sticky dropdown.

Post Routines

Post routines apply to the transfer of data back into SAP via the Posting Engine.

- A Derivation Routine allows the data on the form to be used create a new field
before the data is input to SAP.

- A Validation Routine checks the data in the field for validity before the form can be
submitted. For example, a user-entered code might be checked against the codes in
the database to see whether it is in fact valid.

- A Substitution Routine substitutes the data input to the field for another value. For
example, an item option featured as full text in the form might be substituted for
an item code as the data is input to SAP.

Please see the section on ‘Field-level business logic’ for further details.

3.2.2.3 Field Editing

To edit or cut a field after it has been entered, first select the action you wish to perform
(e.g. update field), then select its row in the Field Name table. Re-click on the desired
action to make changes.

Once all the fields have been entered, click on ‘Return to FLM Form Wizard’ and proceed
to the next step.

3.3 Specify Location for XML Data Definition File

The form data definitions you have just created will be stored as an XML file during the
generation of the FLM interface. Here you can specify the location in which to store that
XML file. You must store it to an accessible location such that it can be imported into the
Adobe Livecycle Designer Tool. Click ‘Set Directory’ and select a new location if the one
displayed is not suitable.

3.4 Alternate Adobe Designer Templates

Here, you can choose whether to:

File: FLM 290 - Developer Guide Page 20 of 76 09/09/2008

- use the FLM master template, which is uploaded on install
- use a user-specified template, selected as an .xdp file from your local machine
- use a previously uploaded template (useful if you are using the wizard to modify a

schema after the template has been configured and re-uploaded into the system)

3.5 Form Options

Under Form Options, you can specify the required form category, transport options, and
whether an audit trail should be created.

File: FLM 290 - Developer Guide Page 21 of 76 09/09/2008

3.5.1 Transport Options

With Offline Transport the form can be sent via email as an attachment.

With Online Transport the form is available via the online form portal.

Mobile Transport is not available in FLM version 290.

3.5.2 Runtime Options

‘No attachments’ will disenable the ability for form users to add attachments to the form.

Blocking the form will prevent it from appearing in the portal, useful if you would like to
prevent others from accessing it in a development environment before it is ready.

An Audit Trail (Variant Trail) can be created as the form is modified through its routing.
Before selecting this option however, it is worth noting that an audit trail generates a
significantly larger file size attached to each form, which may not be desirable if the form
is to be transported offline.

3.5.3 Form Category

Here, select the form category under which you would like the form to be stored. You can
use different form categories to control user access to forms in the portal, or just to
provide logical groupings of forms with a similar function or target area.

3.6 Summary

You can now click on ‘complete’ to generate your form, or ‘back’ to make any
amendments. On clicking ‘complete’ the components of the form will automatically be
saved in the system.

Once the wizard has been closed, you can still make amendments by initiating the form
wizard for a form of the same code, and if necessary updating the version number of the
form.

File: FLM 290 - Developer Guide Page 22 of 76 09/09/2008

4 Field User-exits

In order to use field-level User-exits, you must select the type of Userexit required in the
wizard. Please see the ‘first form’ section for details on how to do this.

There are two types of field-level Userexit: Read Routines and Post Routines.

Read routines occur when the form is rendered: prepopulating a field or creating a
dropdown based on data from SAP.

Post routines are concerned with manipulating the data on the form before it is posted,
i.e. Substitution, Derivation and Validation. These routines are executed when the user
clicks ‘submit’ on the form, and, if a validation fails, the user will be able to re-enter the
faulty data.

The order in which FLM processes Post routines is:

1. Substitution
2. Derivation
3. Validation

In other words, you can substitute or derive values from user-entered data before the final
value is validated.

Once the field has a Userexit assigned to it, go into Forms Lifecycle Manager> Interactive
Forms> Business Logic> Field User-Exits and enter the relevant Form ID.

File: FLM 290 - Developer Guide Page 23 of 76 09/09/2008

Select the required Userexit type from the tabs, then the required field, and then the
‘Userexit’ button to access the code editor.

Here, you can enter ABAP code to execute the required Userexits. Below are guidelines
and hints for creating useful functions.

The following data is available within all field-level user-exits:

<g_data> Internal table of type /FLM/XML_TAB_T storing all current form data
 and one instance of each field.

<g_ccode> 3-character customer code.

<g_ftype> 4-character form type.

<g_field> The name of the currently selected field.

4.1 Field-level prepopulation

Prepopulation = defaulting the field’s value to a predefined value when the form is
rendered, and allowing it to be seen by the user. Often used in conjunction with the
Read-Only property. For example, you might want to enter the name of the user based
on the login credentials they entered in the portal.

In addition to the core data, the following fields are available:

<g_value> The value of the currently selected field.

<g_doc> 10-character document number if passed in. This is used for the email form

scenario triggered by application document output.

<g_user> The user id. For email processing this is the user determined by

/FLM/CORE->GET_OFFLINE_USER (stored on the customer code table.) For
online processing this is the user id passed in by FLM Portal.

The export parameter is ex_value, which has type ‘string’.

4.2 F4 Possible entries

Use this function to create a drop-down menu on a field, with values based on live SAP
data. For example, you might want to allow an employee to select a current client
against which to bill their expenses from the live list held in SAP. The advantage of
using this User-exit as opposed to hard-coding the dropdown possible entries on the
Designer template is that the values will automatically update as the values in the
system change, without having to be edited manually. If the possible entries are not
subject to ongoing change though (for example, select ‘rare’, ‘medium’, ‘well-done’,
then it is easier to use the dropdown functionality in Adobe Designer when creating the
form template.

File: FLM 290 - Developer Guide Page 24 of 76 09/09/2008

In addition to the core data, the following fields are available:

<g_doc> 10-character document number if passed in. This is used for the email form

scenario triggered by application document output.

<g_user> The user id. For email processing this is the user determined by

/FLM/CORE->GET_OFFLINE_USER (stored on the customer code table.) For
online processing this is the user id passed in by FLM Portal.

The export parameter is ex_form_data, which is an internal table with two fields, name
and value.

Note: In FLM version 261, the derived data value needs to be written to the ‘name’
field and the data description needs to be written to the ‘value’ field.

The required syntax is of the form:

 DATA: l_form_data TYPE /flm/form_data.
 MOVE '0' TO l_form_data-name.
 MOVE 'OFF' TO l_form_data-value.
 APPEND l_form_data TO ex_form_data.

4.3 Derivation

Use this Userexit to derive a SAP-relevant value based on user-entered data. For
example, you might want to post the number of hours an employee has worked to SAP,
when they are entering their start and finish times. To do this, you might create an
invisible field on the form: ‘total hours’, whose value would be calculated from the
start and finish time fields.

In addition to the core data, the following fields are available:

<g_return> The ‘return’ field submitted back from the form. This has the structure:

<ACTION> + <CUSTOMER CODE> - <FORM TYPE> - <LANGUAGE> - <VERSION>
- <FORM ID> - <VARIANT> + <RECIPIENT EMAIL ADDRESS>

<g_path> The path of the currently selected field

<g_value> The value of the currently selected field

Changes to <g_value> cause the field value to change before posting.

All fields need to already exist on the form – we cannot derive a field in a new instance of
a subform through the derivation user-exit.

To read values in the <g_return> field we need to split the field as follows:

File: FLM 290 - Developer Guide Page 25 of 76 09/09/2008

SPLIT <g_return> AT '+' INTO l_action l_cms_doc l_rec_email.

Then we can split the cms document reference using the method
/FLM/CORE-> SPLIT_XDP_CMS_DOC.

4.4 Substitution

Used when the user-entered value is to be substitued for another, related to it.

In addition to the core data, the following fields are available:

<g_return> The ‘return’ field submitted back from the form. This has the structure:

<ACTION> + <CUSTOMER CODE> - <FORM TYPE> - <LANGUAGE> - <VERSION>
- <FORM ID> - <VARIANT> + <RECIPIENT EMAIL ADDRESS>

<g_path> The path of the currently selected field

<g_value> The value of the currently selected field

Changes to <g_value> cause the field value to change before posting.

File: FLM 290 - Developer Guide Page 26 of 76 09/09/2008

4.5 Validation

Used to check the validity of user-entered data against SAP back-end data, and allow
user to re-enter data if necessary. You might want to use a message box to prompt the
user as to the nature of the validation error if it occurs.

In addition to the core data, the following fields are available:

<g_return> The ‘return’ field submitted back from the form. This has the structure:

<ACTION> + <CUSTOMER CODE> - <FORM TYPE> - <LANGUAGE> - <VERSION>
- <FORM ID> - <VARIANT> + <RECIPIENT EMAIL ADDRESS>

<g_path> The path of the currently selected field

<g_value> The value of the currently selected field

The export parameters are:

• ex_response String composed of one or several of the following codes:
A On-Line - Error - reject form

 B On-Line - Warning - log event
 C Off-Line - Warning - log event
 D Off-Line - Error - return form
 E Off-Line - Error - delete form

• ex_mess_num Message number from class /FLM/SFS
• ex_msgvar1 Error variable 1
• ex_msgvar2 Error variable 2
• ex_msgvar3 Error variable 3
• ex_msgvar4 Error variable 4

The syntax should take the following form:
if <g_value> is INITIAL.
 ex_response = 'A'.
 ex_mess_num = '999'.
 ex_msgvar1 = 'Initial field not permitted'.
 ex_msgvar2 = <g_field>.
 ex_msgvar3 = space.
 ex_msgvar4 = space.
endif.

File: FLM 290 - Developer Guide Page 27 of 76 09/09/2008

5 Form User-exits

Forms Lifecycle Manager> Interactive Forms> Business Logic> Form User-Exits

Form-level user exits are accessed via transaction /FLM/FORM_MANAGER.
All user-exits are available to all form types; there is no dependency on settings selected
in the New Form Wizard.

5.1 Form-level pre-population
The following data is available within pre-population user-exits:

<g_data> Internal table of type /FLM/XML_TAB_T storing all current form data
 and one instance of each field.

<g_ccode> 3-character customer code.

<g_ftype> 4-character form type.

<g_doc> 10-character document number if passed in. This is used for the email form

scenario triggered by application document output.

<g_user> The user id. For email processing this is the user determined by

/FLM/CORE->GET_OFFLINE_USER (stored on the customer code table.) For
online processing this is the user id passed in by FLM Portal.

The form level pre-population user-exit can be used to prepopulate any field on the form.
It can also be used to create instances of repeating subforms to pre-populate fields within
row data – or nested subforms down to 3 levels of nesting.

The return parameter is ‘ex_data’, which is an internal table of type /FLM/XML_TAB_T.
This parameter is set to equal <g_data> before the user-exit is called.

It is easier to update fields that are in non-repeating subforms with a field user-exit, as in
this case there is no need to handle the internal table.

However, if the same table selections or programming logic is required to determine
several form fields, then it is easier to use the logic just once, at the form level.

The syntax for updating fields in non-repeating subforms is:

READ TABLE ex_data WITH KEY name = 'EBELN' INTO l_data.
IF sy-subrc eq 0.
 MOVE wa_header-ekko-ebeln TO l_data-value.
 MODIFY ex_data INDEX sy-tabix FROM l_data.
ENDIF.

File: FLM 290 - Developer Guide Page 28 of 76 09/09/2008

The syntax for filling fields within a repeating subform called ‘ITEM’ from an internal table
‘itab’ is:

 DATA: l_index TYPE sytabix,
 l_item_row(3) TYPE n,
 l_item_subform TYPE string,
 l_data_value TYPE string,
 l_data TYPE /flm/xml_tab.
*
 FIELD-SYMBOLS:
 <itab> TYPE itab.
*
 LOOP AT itab ASSIGNING <itab>.
 l_item_row = sy-tabix.
*
 move <itab>-ebelp to l_data_value.
 CALL METHOD /flm/sfs=>field_prepopulate
 EXPORTING
 im_data = ex_data
 im_subform = 'ITEM' “Subform name
 im_row = l_item_row
 im_field = 'EBELP' “Field name
 im_value = l_data_value
 IMPORTING
 ex_data = ex_data.
*
 ...
 ENDLOOP.

File: FLM 290 - Developer Guide Page 29 of 76 09/09/2008

5.2 E-mail address derivation
This user-exit returns an internal table of e-mail addresses and is used when an email form
is required to be dispatched to multiple recipients.

The following import parameters are available:

• IM_EMAIL_STAT-CCODE Customer code
• IM_EMAIL_STAT-FTYPE Form type
• IM_EMAIL_STAT-FLANG Language
• IM_EMAIL_STAT-FVER Form version
• IM_EMAIL_STAT-STAT_IN Form status
• IM_EMAIL_STAT-RECEIV_ADDR Receiver’s e-mail address
• IM_EMAIL_STAT-EMAIL_TITLE E-mail title text
• IM_EMAIL_STAT-EMAIL_BODY E-mail body text
• IM_EMAIL_STAT-EMAIL_ATT_NAME E-mail attachment text
• IM_DOCUMENT Application document number

The export parameter is EX_EMAIL_ADDRS which is an internal table with structure
/FLM/EMAIL. We can update the following fields only within this structure:

• RECEIV_ADDR Receiver’s e-mail address
• EMAIL_TITLE E-mail title text
• EMAIL_BODY E-mail body text
• EMAIL_ATT_NAME E-mail attachment text

In this user-exit we can read the document data (using the document number) to find the
partner number and then read the e-mail address from the partner’s address details.
The syntax required is:

Data: wa_email TYPE /flm/email,

l_smtp_addr TYPE ad_smtpadr.

call method /flm/sfs-> GET_PARTNER_ADDR_SMTP
 EXPORTING
 im_parvw = im_parvw
 im_parnr = im_parnr
 IMPORTING
 ex_smtp_addr = l_smtp_addr.

Wa_email = IM_EMAIL_STAT.
wa_email-RECEIV_ADDR = l_smtp_addr
APPEND wa_email TO ex_email_addrs.

Note: In FLM version 261 we cannot pass in the partner from the NAST record for
email forms. Instead we need to start with document data in the user-exit.

5.2.1 Offline form triggered for form distribution list
The email user-exit described above is always used to determine a distribution list.

File: FLM 290 - Developer Guide Page 30 of 76 09/09/2008

The email form will be triggered by the FLM email submissions utility or by a custom
program that calls function module /FLM/OFFLINE_FORM_SUBMIT.

5.2.2 Offline form triggered by FLM Routing Server
The normal email user-exit is triggered for the determination of e-mail recipients for email
forms triggered by FLM Routing configuration or user-exit.

5.3 Workflow (FLM Routing Server)
The workflow user-exit can be used to determine the subsequent form owner, version,
status and set flags to trigger the sending of an email form or notification e-mail in the
case of online forms.

The following import parameters are available:

• im_action Action
• im_instance Form instance (contains form type, form id etc)
• im_ftransport Online/Offline flag
• im_owner Form owner
• im_remind E-mail notification flag
• im_status Form status

The following export parameters are available:

• ex_owner New owner
• ex_ftransport Online/Offline flag
• ex_remind E-mail notification flag
• ex_status New status

Typically the logic for determining the new workflow options will be driven by custom
tables or by navigating the HR organisational structure.

5.4 Version
A new version can be determined prior to form rendering using the version user-exit. This
user-exit is only triggered when the form is first created.
The import parameters are:
Im_document
Im_email_rece
Im_user
The export parameter is ex_version.

5.5 Language
A new language can be determined prior to form rendering using the language user-exit.
This user-exit is only triggered when the form is first created.
The import parameters are:
Im_document
Im_email_rece
Im_user
The export parameter is ex_lang.

File: FLM 290 - Developer Guide Page 31 of 76 09/09/2008

5.6 Indexing
Global data is available in this userexit as follows:

• <g_data> Form data
• <g_ccode> Customer Code
• <g_ftype> Form Type
• <g_doc> Application document reference [form render only]
• <g_return> Return field [form submit only]
• <g_user> Logged in user

Update index data in the structure ex_findex

• ex_findex-ind01 char12
• ex_findex-ind02 char12
• ex_findex-ind03 char12
• ex_findex-ind04 char40
• ex_findex-ind05 char40
• ex_findex-ind06 char40

Use this user-exit to write values to six index fields.
These fields are not written to by any other process and are reserved for customer
indexing of forms, in order to enable form selection for reporting purposes.
This user exit is called during intial form render AFTER pre-population at each form
submission BEFORE form routing.
It is recommended to consider the current action from the FLM RETURN field in order to
closely control this customer index update.

5.7 Enqueue/Dequeue
Use this user-exit to lock tables and objects when a form is rendered so that it cannot be
updated through the lifecycle of the form process. Normally code a matching dequeue
user-exit, and call this from the appropriate workflow step or posting adapter.

6 Default Form

This menu compiles a number of functions that allow easy manipulation of the form which is
currently set as default.

6.1 Maintain Default Form

This contains a list of all forms stored in the system, from which you can set one as default
using the tickbox next to its name.

6.2 Preview Default Form

In the activity 'Form Types Configuration', one of the options allows you to set a form as
default.

File: FLM 290 - Developer Guide Page 32 of 76 09/09/2008

In ‘preview default form’, that form will be displayed as a pdf as it currently appears in the
system. You cannot enter any data into this preview form, nor open it for editing.

7 Form Template and Package Handling

7.1 Exporting and Importing Form Packages

FLM packages, i.e. a combination of the form template and data schema (with or without
its associated business logic) can be transported between non-productive systems using
this facility. To transport a form through to productive systems, you should use SAP
transport requests as usual.

7.1.1 Export Form Package

In this activity you can export form definitions to an external file. You can subsequently
import these definitions into any FLM system which is of equal or later version. You can
export business logic in non-productive systems by clicking the checkbox, but business
logic cannot be transported in productive systems.

To use this activity, select the form you wish to export using the selections at the top of
the screen, click execute and select a directory to save the file.

File: FLM 290 - Developer Guide Page 33 of 76 09/09/2008

7.1.2 Import Form Package

In this activity you can import a form package into your system. A form package consists
of one or more forms in a bundle. During the import you will be given chance to select
which forms you wish to import, and also you are given the opportunity to allocate new
form types, versions and languages as required.

7.1.3 Upload Form Template

This activity is used to upload an Adobe Designer template into FLM. The Master template
(Form Code XXXX) should be uploaded at install, and it is used during the form design
process to upload a customised template. During the activity, it will check whether there
are digital signatures on the template, and ask you to select whether they are client- or
server-side. Only one server-side signature is allowed per template.

7.1.4 Download Form Template

This activity can be used to download a form-associated template from FLM onto any
machine. Select the location of the .xdp file and click save.

8 Form Routing, Configuration and Email Setup

8.1 Form Routing
This section allows you to define all aspects of the form workflow, or routing. e.g:

File: FLM 290 - Developer Guide Page 34 of 76 09/09/2008

8.1.1 Form Owner Determination

In this activity you determine which user will become the new form owner after an action
by a specified user on a form of a specified status.

This activity is typically only relevant for workshops and rapid forms prototyping.

Stages in the form routing are listed as a function of customer code, form type, form
status, action and user.

To add a stage in the form routing, go to ‘new entries’ and enter a new sequence of form
ownership transfer.

1. Enter the customer code
2. Enter the form type code
3. Enter the first form owner
4. Enter the form status code to which the action will be applied
5. Enter the desired action code
6. Enter the name of the user that will become the owner of the form once steps 1-5

have been applied.

8.2 Form Status Determination

This menu allows you to view Form Statuses and Actions for Form Routing.

File: FLM 290 - Developer Guide Page 35 of 76 09/09/2008

To view the workflow status of a form, select its name from the list by clicking on the blue
bar to the left of the relevant row, then double-click on ‘Workflow Status’ under Dialog
Structure. This will bring up a screen detailing the workflow of that form, including
whether that stage of the routing is to be conducted online or offline, email settings and
links to any email title and body text.

A new status routing can be created by selecting ‘New Entries’ and entering the Customer
Code, Form Code, Version, Status, Action on Status, Status After Action and Online/Offline
settings.

To insert a newly created status into a routing, you can click on a status field and the new
status will automatically appear in the selection table. The new status configuration will
the have to be saved using the floppy disc icon.

ABAP code can be entered to define the form owner in the next stage of the routing by
accessing data from the SAP database. Please see the Developer Guide for further details.

8.3 E-mail Reminder Settings

Email reminders can be automatically sent to the relevant user if the form spends too long
at their stage in the form routing. You can set which form statuses have automatic
reminders associated with them, the number of days that are allowed to pass before a
reminder is sent and whether a reminder will be resent if no action is taken.

File: FLM 290 - Developer Guide Page 36 of 76 09/09/2008

This option allows you to create and modify email reminder settings for every individual
form in the system, identified by its customer code and form type. Reminders can be
configured according to form status; e.g. different reminder settings can be made
depending on whether the form is in initial or rejected status. Links can be made to the
desired email title text and body text, and an automatic action should reminders be
ignored (e.g. rejection) can be set up.

To make a new email reminder entry, go to ‘new entry’ at the top of the screen. Here you
can enter the 3-letter customer code, four-digit form type, and form status at the time the
reminder should be sent.

Under ‘FLM routing server settings’ you can check options to:

Send reminder email. The ‘reminder window’ is the number of days allowed after the
recipient has received the form for their completion or authorization before a reminder is
sent.
Resend reminder: here enter the name of the text object used to store the title of the
reminder e-mail, and the name of the text object used to store the email body text.
Escalate form. If the user has still not passed the form on after all reminders have been
sent, the system can automatically take action on the form. You can enter the number of
days that make the escalation window, and the required action code, e.g. R.
Posting OK
Tick this box if posting is required at the given status/stage in the workflow. The actual
posting configuration takes place in the Forms Posting Engine, under ‘Define valid FPE
statuses’, but this box must also be checked to allow posting to take place.
No History
Allows you to select whether the form history is viewable by the owner in that status/stage
of the workflow. For example, it may be desirable to hide the form history from a user.

File: FLM 290 - Developer Guide Page 37 of 76 09/09/2008

8.4 E-mail Settings

This facility allows you to view and create email sender and receiver settings. This defines
the email addresses assigned to particular stages in an offline form routing. For example, a
form with status I (initial) may be submitted to an approver at the first stage of the form
routing. In the example below, an Initial form ABC3 will be routed to rg@arch.co.uk once
submitted by the initiator.

8.5 Define Approved Email Addresses

This facility allows you to create a list of Safe Email Recipients recognized by the system
to be used in form routings in non-productive systems.

mailto:rg@arch.co.uk

File: FLM 290 - Developer Guide Page 38 of 76 09/09/2008

9 IMG Execution Tools

9.1 System Log

The FLM system log captures various events that occur in the system - the log is a tool
supplied to help with the initial system configuration and also to help when problem
solving. Among other things, the storage of form attachments (other than the form history)
is recorded here.

9.2 Preview Default Form

This activity will open a preview of the form which is currently set as default within
SAPGUI. Useful to check the appearance of a form’s template after uploading.

9.3 ADS Performance testing

Use this activity to test the speed of form rendering. Go into the activity, enter the
number of times you want the form to render (e.g. 10), and then select the form type you
would like to test. The program will render the form the number of times you have
dictated in succession, and return an average time lapse per render. A one-page form
should take in the region of one second to render.

ADS performance is a function of hardware, software and basis settings. The
overwhelming majority of processing in ADS rendering is done on the java stack.

Performance improvements fall into 2 main categories, firstly making an individual CPU
thread run more quickly, and secondly, providing more parallel CPU threads for ADS
processing:

Individual CPU thread Tuning

Check there is no memory limitation on the machine at the OS layer. Processes to
monitor are "PDFManipulation.exe" and "XMLForm.exe".

File: FLM 290 - Developer Guide Page 39 of 76 09/09/2008

Run the ADS system on native 64-bit hardware. Even though some ADS modules are
32-bit, the overall performance can be improved by building on 64-bit
hardware. Check SAP note 925741 for details of supported platforms.

Make the form templates as small as possible. Do not embed logos and use non-
embedding fonts [TNR, Times, Arial, Helvetica and Courier] only.

Parallelising ADS Processing

Java stacks can be clustered.

In the Visual Administrator, <SID> / ServerXX / Services / PDF Manipulation module
- Low encryption, change the PoolMax setting to allow more CPU cores to run ADS
process threads. Obviously this can have a detrimental effect on other services
provided by the java stack. Similarly adjust 'XML Form Module' service via the
VA. Always restart the java stack after these changes.

Please see SAP's "Sizing for Adobe Document Services" guide for more details on
performance tuning. This can be downloaded from OSS

9.4 List CMS Documents

This simple report lists form data and also checks that the form data is stored correctly in
the CMS database. Make your selections of the form types you would like to view on the
initial screen, and click ‘execute’ to produce the report. It is useful for investigations
during system setup, as it links the Forms Posting Engine with the record in the CMS
database.

10 Form Posting Engine (FPE)

The Forms Posting Engine [FPE] is the component of FLM that controls the posting of data
captured on an interactive form into an SAP back end. FPE provides the framework to
control when a form is applicable for posting. FPE also provides the facility to handle
errors in posting and to repost the data as required once a potential problem has been
corrected.

FPE can be run interactively in foreground or scheduled as a batch job to automatically
pick up and post forms on a regular basis - but still allowing foreground intervention for
problem resolution.

FPE also provides the facility to display the form as it was posted inside the SAP GUI.

File: FLM 290 - Developer Guide Page 40 of 76 09/09/2008

10.1 Processing Control

FPE processing is controlled by 2 tables. They can be accessed from menu items inside the
FLM section of the IMG as shown:

The first table defines what Forms status is applicable for FPE posting. In other words at
what stage in the Forms life do we want to persist some data from it into an SAP back end.
The other table controls what function module will be invoked to extract data from the
Forms and post it into SAP.

10.2 Valid FPE status.
The control table view behind this option is called /FLM/FPE_STAT_V. On execution the
following screen is displayed:

File: FLM 290 - Developer Guide Page 41 of 76 09/09/2008

The ‘Posting ok’ check box makes a particular form type and status applicable for a posting
attempt.

10.3 FPE function control
The control table view behind this option is called /FLM/FPE_CNTRL. On execution the
following screen is displayed:

File: FLM 290 - Developer Guide Page 42 of 76 09/09/2008

This controls the function module invoked by FPE when processing is initiated by the main
program /FLM/FPE_INVOKE. Note that there is a sequence number in this table as multiple
processing functions are allowed. It is preferable that the function modules use the naming
convention as follows. /FLM/FPE_XX_YYYY_VVV where

• XX is the SAP module where possible or ZZ if the processing is not module specific
eg. SD

• YYYY is the 4 character form ID the posting mosule relates to
• VVV is the minimum SAP version required eg. 700

The FPE framework checks the SAP version is at the minimum level required to run the
posting function so the last 3 characters of the function module must be the SAP version of
the machine that will process the form.

The next field on the attached screen shot is for an RFC destination. FPE can post forms
data to functions reciding on remote SAP systems. So FLM can be running on one SAP
instance but data is posted to a seperate SAP instance. This is to allow for the scenario
where an installation eg. is running a 4.7 ERP system so FLM is installed on its own
Netweaver system and posts forms data to the 4.7 box.

10.4 Process Functions
Forms data is posted into a back end SAP system by normal SAP function module developed
in SE37 like any other function. Its is required to use a predefined set of import and export
parameters.

File: FLM 290 - Developer Guide Page 43 of 76 09/09/2008

A screen shot of the parameters in an existing posting function is shown below:

The import parameters are:

• Forms_Data – An internal table of the data extracted from the form so that the
function can extract / convert it prior to a posting attempt.

• Sequence – The sequence number passed in from the control table
/FLM/FPE_CNTRL. Its is possible for one posting function to be invoked multiple
times with each call being distinguished by a change in sequence number. One
posting function could therfore be written to perform multiple functions. This is not
generally used and is usually 0.

• Dialogue_mode – Some posting functions can be run interactively to facilitate the
ease of identifying a posting problem. To allow this the dialogue mode is passed
into the adaptor from the /FLM/FPE_INVOKE program selection screen. [Note that
this facility is not possible for postings into SAP by non screen related functions
such as BAPI’s.]

The export parameters are:

• Posted_doc – the document number or reference related to a successful posting is
assigned to this parameter. The FPE framework checks this variable for a non initial
value on return from invocation. A value indicates a successful posting. Initial value
indicates the posting failed.

• Return – SAP standard BAPI return structure for the return of error messages to the
FPE framework.

File: FLM 290 - Developer Guide Page 44 of 76 09/09/2008

• No_post_attempt – indicates to the FPE framework that no attempt to post was
made – so neither success or failure.

A full example of a posting adaptor is attached at the end of this document as Appendix A.

10.5 Invoking FPE

Forms data is posted into a back end SAP system by normal SAP function module developed
in SE37 like any other function. Its is required to use a predefined set of import and export
parameters.

A screen shot of the parameters in an existing posting function is shown below:

The import parameters are:

• Forms_Data – An internal table of the data extracted from the form so that the
function can extract / convert it prior to a posting attempt.

• Sequence – The sequence number passed in from the control table
/FLM/FPE_CNTRL. Its is possible for one posting function to be invoked multiple
times with each call being distinguished by a change in sequence number. One
posting function could therfore be written to perform multiple functions. This is not
generally used and is usually 0.

• Dialogue_mode – Some posting functions can be run interactively to facilitate the
ease of identifying a posting problem. To allow this the dialogue mode is passed
into the adaptor from the /FLM/FPE_INVOKE program selection screen. [Note that

File: FLM 290 - Developer Guide Page 45 of 76 09/09/2008

this facility is not possible for postings into SAP by non screen related functions
such as BAPI’s.]

The export parameters are:

• Posted_doc – the document number or reference related to a successful posting is
assigned to this parameter. The FPE framework checks this variable for a non initial
value on return from invocation. A value indicates a successful posting. Initial value
indicates the posting failed.

• Return – SAP standard BAPI return structure for the return of error messages to the
FPE framework.

• No_post_attempt – indicates to the FPE framework that no attempt to post was
made – so neither success or failure.

10.6 Posting adapter coding
All posting adapters must have the following import parameters:
FORMS_DATA TYPE /FLM/XML_TAB_T
SEQUENCE TYPE /FLM/PROCESS_SEQ
DIALOGUE_MODE TYPE CHAR1

And the following export parameters:
POSTED_DOC TYPE /FLM/PDOC
RETURN TYPE BAPIRETURN1
NO_POST_ATTEMP TYPE FLAG

Normally the posting adapter will loop around the FORMS_DATA internal table, taking the
data from the form and filling other internal tables and/or structures required as import
parameters by BAPIs to make the final SAP update.

Any BAPI returns are passed back and and generated document number is also returned.

TYPES: t_return TYPE TABLE OF bapireturn,

DATA: subform_tab TYPE /FLM/XML_TAB_T ,
 subform_wa_t TYPE /FLM/XML_TAB_T.
 w_return TYPE t_return,
 path_tab TYPE TABLE OF string,
 l_path_part TYPE string,
 l_parent_path TYPE string,
 l_parent_path_c(80) TYPE c,
 l_parent_path_len TYPE i,
 l_subform(3) TYPE n,
 t_lines TYPE i.

Call method /FLM/SFS-> DATA_ADD_PARENT_PATH passing in FORMS_DATA and receiving
back SUBFORM_TAB.

Now we have all the parent paths we can loop at this to get all the form data for a
particular instance of a subform.

File: FLM 290 - Developer Guide Page 46 of 76 09/09/2008

Use the following syntax for fields in non-repeating subforms:
 READ TABLE forms_data ASSIGNING <f_formfld>
 WITH KEY name = 'DELIV_EXT'.
 <bapi_import_structure-field> = <f_formfld>-value.

File: FLM 290 - Developer Guide Page 47 of 76 09/09/2008

Use the following syntax for fields in repeating subforms:
* Get the first occurance of an item field:
READ TABLE subform_tab ASSIGNING <subform>
 WITH KEY name = 'MATNR'.

 l_parent_path_c = <subform>-parent_path.
 l_parent_path_len = STRLEN(l_parent_path_c) - 3.
 l_subform = 1.

 WHILE l_subform LT 4.
 MOVE l_subform TO l_parent_path_c+l_parent_path_len(3).
 MOVE l_parent_path_c TO l_parent_path.
 CLEAR: subform_wa_t, wa_inb_del_item.
*
 LOOP AT subform_tab ASSIGNING <subform>
WHERE parent_path = l_parent_path.
 APPEND <subform> TO subform_wa_t.
 ENDLOOP.

 DESCRIBE TABLE subform_wa_t LINES t_lines.
 IF t_lines GT 0.

* Now we have a table of the fields in just one row.
 READ TABLE subform_wa_t ASSIGNING <subform>
 WITH KEY name = 'MATNR'.
 <bapi_import_item_wa-field> = <subform>-value.

READ TABLE subform_wa_t ASSIGNING <subform>
 WITH KEY name = ...
...

* Now append the item row to the BAPI import internal table parameter
APPEND <bapi_import_item_wa> TO <bapi_import_item>.
 endif.
 ELSE.
 EXIT.
 ENDIF.
 ADD 1 TO l_subform.
 ENDWHILE.

Once all the BAPI import parameters are filled then the BAPI is called and the results
passed back to the calling program.

File: FLM 290 - Developer Guide Page 48 of 76 09/09/2008

11 FLM Routing Server

The FLM Routing Server is a service program that runs as a background job, and performs
actions on forms based on their system status. The set-up required for the routing server
depends on the business process to be mapped. This document describes the set-up for
four types of functionality:
• Using the Routing Tables for Form Submission.
• FLM Routing Server for triggering Off-line forms.
• FLM Routing Server for Form Escalation.
• FLM Routing Server for Reminder E-mails.

11.1 Using the Routing Tables for Form Submission.
When a form is submitted back to SAP, either for an on-line scenario or for an off-line
scenario, the form is returned with its original status plus the ‘action’ selected by the
submitting user. The system follows the routing server logic to determine a new status,
new user etc. for the submitted form during the update to SAP.

11.1.1 Table /FLM/WF_STAT: Form Status Derivation

Activity: Routing Status Table

The form derivation table is keyed on customer, form type, form status and action. The
following information is derived from this table:

o New form status
o For example an initial form with an action ‘submit’ may derive the new status

‘submitted’
o New form mode
o This can be set to ‘on-line’ or ‘off-line’. See section 1.2
o E-mail notification settings
o There is an e-mail notification flag, plus standard texts for the e-mail subject and

e-mail body.
o Render options. This can be set to:

o Dynamic: allows the user to use dynamic template functions such as
repeating rows

o Static: allows user to put ‘stamps’ and annotations on the form, but does
not support dynamic properties.

o Form Tagging: allows data to be read by other programs, e.g. JAWS software, but
increases form size.

File: FLM 290 - Developer Guide Page 49 of 76 09/09/2008

Within the form status derivation table we need to map every possible status of the form,
and every possible action that can be performed for each status, such that a business
process is mapped; it is this table that defines the form’s lifecycle.

Example of a simple off-line form routing without approval:
Form
type

Status IN Action Status
OUT

Version
OUT

Mode E-mail
Notification

AB01 Initial Submit Submitted

Note that as there are no approval steps, the final form status is ‘Submitted’.

File: FLM 290 - Developer Guide Page 50 of 76 09/09/2008

Example of a simple on-line form routing with approval:
Form
type

Status IN Action Status
OUT

Mode E-mail
Notification

AB01 Initial Submit Submitted On-line X
AB01 Submitted Approve Approved On-line
AB01 Submitted Reject Rejected On-line X
AB01 Rejected Submit Submitted On-line X

This example represents an on-line form, with an approval step. When the form is
submitted or rejected, an e-mail notification will be triggered to the next person in the
business process.

Example of an on-line form with off-line approval:
Form
type

Status IN Action Status
OUT

Mode E-mail
Notification

AB01 Initial Submit Submitted Off-line
AB01 Submitted Approve Approved On-line
AB01 Submitted Reject Rejected On-line X
AB01 Rejected Submit Submitted Off-line

Note that an e-mail notification is not sent to an off-line user, since they will already be
receiving an e-mail with the PDF form.

11.1.2 Table /FLM/WF_USER: Form owner Derivation
The user derivation table is keyed on form type, status, current owner and action. This
table is used to derive the new form owner only.

This table can be used in scenarios where the number of users is very low, or when there is
no other source of organizational data available to determine who should approve a form.
Its main use might be for workshopping or prototyping a business process without the need
to develop code to determine the user.

11.1.3 User-exits
In practice the new form owner is likely to be derived from an existing data source such as
the SAP HR Organisational structure.

File: FLM 290 - Developer Guide Page 51 of 76 09/09/2008

A user-exit will be available to determine the next form owner, based upon any SAP data
including the form posting table (FLM/FPE) and form history table (FLM/FPE_H) such that
previous form owners can be determined. (This is of particular importance when deriving
the new owner in the case of form rejection.)

11.1.4 Variable substitution in e-mail standard texts
Variable substitution is available in all three e-mail scenarios (offline e-mail, notification
e-mail and reminder e-mail).
Three types of variable can be substituted: FLM fields, system fields and form fields.

FLM fields
FLM fields can be included in each standard text using the format:
‘&<field name>&’
In FLM version 2.4, the following fields are available:
• &FID& Unique Form ID
• &FORMTYPE& Dscription of form type
• &URL& URL link to the form

System fields
System fields can be included in each standard text using the menu path: Include-
>Symbols->System->ABAP System Symbols
In FLM version 2.4, the following fields are supported:
• &SYST-DATUM& System date
• &SYST-UZEIT& System time
• &SYST-UNAME& System user

Form fields
In the scenarios when form data exists, any non-repeating data can be included in the
standard texts; the data field must not exist within a repeating subform. So
root/header/footer fields can all be included, whereas item fields cannot.
Again the format required is:
‘&<field name>&’

Note that if any form field was given the same name as an FLM field then the substitution
would work for the FLM field, not the form field.

11.2 FLM Routing Server for triggering Off-line forms.

During a status change as defined within table /FLM/WF_STAT, if the mode flag is set to
‘off-line’ then this will trigger the render and distribution of an off line form. The settings
for the off-line form e-mail are stored in table /FLM/EMAIL.

File: FLM 290 - Developer Guide Page 52 of 76 09/09/2008

11.2.1 Table /FLM/EMAIL: Off-line form e-mail settings

This table stores the standard texts for the subject, body and attachment name, plus the
recipient e-mail address for a form. The full key includes the status and version of the
form, so that different versions of the form at different statuses would be sent to different
recipients.

11.3 FLM Routing Server for Form Escalation.

The FLM Routing Server program /flm/wf_engine should be scheduled as a background job
and performs two functions: (a) Escalate forms, (b) Send e-mail reminders.

The form escalation job should be run at least once per day. For form escalation the
routing server checks on all forms to check whether they need to be escalated to another
user. The form escalation settings are stored in table /FLM/WF_ESCA.

File: FLM 290 - Developer Guide Page 53 of 76 09/09/2008

11.3.1 Table /FLM/WF_ESCA: Form Escalation settings

The form escalation table is keyed on customer, form type and status. For any form at any
particular status an escalation window (in days) can be set, plus an escalation action,
which will be taken for any form that exists in the status for the escalation window.

The escalation action pushes the form one step along its route, for example, a submitted
form could be automatically rejected [or approved] if no approval was granted within 5
days.

The effect of the action is to trigger five potential updates:

o Change the form owner
o Change the form status
o Change the form version
o Trigger an offline form
o Trigger an e-mail notification

These actions are configurable using tables /flm/wf_stat, /flm/wf_user and /flm/email as
described in sections 1.1 and 1.2.

11.4 FLM Routing Server for Reminder E-mails.
The second task the routing server provides is to send out reminder e-mails to users who
have not processed a form. Normally this would be used in an approval scenario; if the
form has been neither approved or rejected then a reminder is sent out. The functionality
is similar to the escalation functionality, since a ‘window’ of days is defined after which a
reminder e-mail will be sent out.
If both an escalation window and a reminder window are defined for the same form and
same status, then the reminder window will be set to be less than the escalation window.
For example, a submitted for that is waiting approval might trigger a reminder after 2
days, and then be escalated after 4 days.

File: FLM 290 - Developer Guide Page 54 of 76 09/09/2008

11.4.1 Table /FLM/WF_REMI: Form Reminder settings

The e-mail reminder window is defined by form status on table /FLM/WF_REMI.
Standard texts for the e-mail subject and e-mail body are also derived from this table, and
variable substitution is possible as described in section 1.1.4.
There is also a ‘Resend’ flag, which controls whether several e-mail reminders will be sent
out for the same form/status.

FLM Routing Server must only be run once per day for any form type, as running this
multiple times on a single day would generate multiple reminders on the same day
regardless of the ‘Resend flag’.

The logic behind the selection of the form for a reminder e-mail is as follows:
[1] Is today the last day of the reminder window?
[2] Has the reminder window passed AND is the Resend flag set?
If the answer to either of these is yes then a reminder e-mail is generated.

For example, if the reminder window was set to be 2 days and the resend flag was not set
then the owner would receive a reminder on day 2 only. However, if the reminder window
was set to be 2 days and the resend flag was set, then the owner would receive a reminder
on day 2 and on each subsequent day until he/she processed the form, or the form was
escalated by FLM Routing Server.

11.5 Portal task instructions

Portal Task Instructions messages can contain variables &1, &2, &3 and &4. The values
from the first 4 Index fields will be substituted in at runtime and hence appear in the
Portal.

File: FLM 290 - Developer Guide Page 55 of 76 09/09/2008

To use this facility, use transaction SE91 and message class /FLM/[3digit cust code] e.g.
/FLM/ACL. Enter the required portal message (such as ‘Please approve this form’).

To make use of the variable capability, use ‘&’ signs to denote an index field. (e.g. ‘please
approve a form for &1’. You can then set up &1 to contain the name of the person who
submitted the form:

- In the ‘Forms Type Configuration’ activity, enter the name of the form fields you
wish to index and click save to prompt a customising request.

12 Correspondence Generation

Correspondence generation allows the creation of letters, based on a template created in
Adobe Designer. The text comes from SAP standard texts, which can contain variables that
take on values from the SAP database at runtime.

File: FLM 290 - Developer Guide Page 56 of 76 09/09/2008

12.1 Developing a letter template and texts

A developer creates the template and texts, which an administrator can then use to create
a standard letter.

1. Create Letter Template in Adobe Designer
2. Create Standard Texts (letter paragraphs) in transaction SO10. Define variables by

‘&’ characters. Any FPE or SYST variable can be accessed, as well as
‘&FORMNAME&’ (description of correspondence type) and ‘&URL&’ (encrypted
hyperlink for notification and reminder emails)

3. Go to ‘maintain dynamic variables’ and enter business logic to derive each of the
variables (listed by customer code, not letter type)

4. Go to ‘maintain correspondence types’ and select a letter template to view and
arrange its constituent paragraphs (standard texts). Here you can configure the
permissions the administrator will have on each paragraph; for example you can
make them read-only, editable, or editable (but with warning)

5. (Go to transaction SE91 to create any paragraph warning messages)
6. Select the message text in ‘maintain correspondence types’ if required
7. Each correspondence can update a SAP object. The object is determined by its SAP

Business Object name and so can be any object in the SAP system.
8. Go to the ‘link correspondence to business object’ activity and enter the properties

of any system table you wish to update
9. Create a routing for the letter if the template will be contributed to by more than

one person. This is done using the standard FLM routing activities; see the section
on form routing.

File: FLM 290 - Developer Guide Page 57 of 76 09/09/2008

13 Form Structure

13.1 Data hierarchy
The top-level node in the data hierarchy represents the form. There are no settings to
configure on this node. It is suggested that this node is called the same name as the 4-
digit ‘Form Type’ in FLM.

A. Data hierarchy in Adobe Designer

Beneath the Data hierarchy are three types of node:
□ Master pages

At least one master page must be defined. Typically the form header/footer/logos
– anything that should be repeated on each page, should be put inside the master
page. Also a Content Area must be defined, which is basically a box defining the
boundaries for all the other form fields. This ensures that form fields do not
overlap with headers and footers on the master. The Content area by default does
not have a name it should be named and by default this should be called ‘content’.
This is critical when coding as un-named objects or subforms make referencing in
script very difficult.

□ Subforms
There are two types of subform; ‘Flowed’ and ‘Positioned’.
The ‘Flowed’ subforms generally follow the hierarchy represented by the xsd data
schema. The ‘Positioned’ subforms represent physical groupings of fields at the
same logical level within the xsd data schema. A flowed approach will allow the
form to work in a dynamic nature. For example, for an invoice you would define
one header, one detail line, and one footer. The data would then be bound and for
each line on the invoice a new detail line will be created, and the Reader will then
flow all trailing subforms correctly.

File: FLM 290 - Developer Guide Page 58 of 76 09/09/2008

□ Variables
There are two types of variable; ‘Variables’ and ‘Script Objects’.
Variables are used for storing any data string. You can use Javascript to read or
write to these variables. ‘Script Objects’ are (groups of) Javascript sub-routines
that can be called at any point using Javascript behind form/field events.

□ Referenced Objects
These are objects that are not naturally occuring in the form, but may appear
based upon certain events. The classic example of this is a Footer subform that
should only appear if a page break occurs on another subform.

13.2 Subform definition and binding
The top-level subform is always FLOWED.
As you work your way logically through the subform then each subform is FLOWED until the
final subform in which data fields sit, which is POSITIONED. Fields must always sit inside
POSITIONED subforms if they are to be displayed, as it is not possible to physically position
a field inside a FLOWED subform.

It is essential to have this hierarchy of flowed subforms since the option to set a subform
to be repeating is only available if the parent subform (the next level up) is FLOWED.
However, it is possible for either a FLOWED or a POSITIONED subform to be repeating as
long as the parent subform is FLOWED.

It is not necessary to have a 1:1 match between the subforms in the form and the subforms
designed within FLM: The form will often require additional subforms in order to handle
the field positions as well as the data flow.

It is not necessary to bind each subform in the data hierarchy, unless the subform has
repeating rows or is nested within another subform that has repeating rows. In other cases
the binding of the field is sufficient.

13.2.1 Binding for non-repeating subforms.
There is no need to bind non-repeating subforms as all the fields within those subforms are
effectively at root level, be they header fields, item headings, footer fields etc.

The binding of the fields inside non-repeating subforms takes the following form:

$record.Header.form_status

In this example ‘Header’ is the data node in the xsd data schema and ‘form_status’ is the
field name under the ‘Header’ node in the xsd data schema. If there were more sub-nodes
in the data schema then they would all appear in the binding path.

13.2.2 Binding for repeating subforms.
It is essential to bind subforms that can repeat.

The binding of the subform takes the following form:

$record.EmployeeUtil.ResUtilisation[*]

File: FLM 290 - Developer Guide Page 59 of 76 09/09/2008

In this example, ‘EmployeeUtil’ is the data node in the xsd data schema that sits
underneath the root (‘DATA’) node. ‘ResUtilisation’ is the data node in the xsd schema
that contains repeating fields. The notation of the [*] means for all nodes that match this
Xpath query.

If the repeating subform was defined with a parent of ‘ROOT’ then the binding would take
the following form, as no path of the node hierarchy would be necessary:

$record.ITEM[*]

In this example, of course, the node is called ‘ITEM’ and its parent is the root ‘DATA’ node.

The binding of a repeating subform is different depending on whether there are any nested
subforms within the subform to be bound.

If there are no nested subforms then the POSITIONED subform is set to have repeating
rows, and is bound to the data node.

If there are further nested subforms within the subform that contain data to be bound,
then the FLOWED subform is set to have repeating rows and is bound to the data node.

This often means that there is a POSITIONED subform without binding (ie ‘Normal’ binding)
that sits in-between the bound FLOWED subform and the fields within that subform. This
in turn means that the binding for those fields is takes a different form.

Note that there is an option to define a data schema with separate nodes for the repeating
subform and for all the fields at the level of repeating subform:

Workorder FLOWED, REPEATING
 Workorder_info POSITIONED
 <fields>
 Workorder_details FLOWED
 Employee_details POSITIONED, REPEATING
 <fields>
 Plant_details POSITIONED, REPEATING
 <fields>

In this scenario the subforms ‘Workorder’, ‘Employee_details’ and ‘Plant_details’ must be
bound, but it is not necessary to bind the subform ‘Workorder_info’. (While it is not
needed it is best pratice to always bind subforms to the corresponding node.)
However, if there is a corresponding data node(ie. There are no data fields are defined
under the ‘workorder’ node, just nodes for info, employees and plants) then the
Workorder_info subform should be bound, and this means that the binding is the same as
for a normal POSITIONED subform regardless that there are nested subforms.

In the scenario where the POSITIONED subform is bound then the binding for fields within a
repeating subform takes the form:

File: FLM 290 - Developer Guide Page 60 of 76 09/09/2008

EBELP

The immediate parent of the field defines the full data path so there is no need to define
it again. Binding always work on a relative path unless they start with record in which case
they become absolute paths.

In the scenario where the FLOWED subform is bound but the child POSITIONED subform is
not bound, then the binding for fields within a repeating subform takes the form:

$record.ITEM[*].EBELP

This is because the immediate parent of the field (the POSITIONED subform) has no
binding, so the full data path is required.

Do not attempt to bind both the FLOWED and POSITIONED subforms to the same data node.

13.2.3 Binding for nested subforms.
The binding for nested subforms follows exactly the same pattern as above. This means
that if there are further nested subforms then the FLOWED subform must be bound,
otherwise the POSITIONED subform should be bound.

Since nested subforms always sit inside FLOWED subforms that are bound, then the binding
of the nested subform is not fully declared, but instead it is just the subform name:

plantdata[*]

The binding of the fields is the same as described in the previous section.

Note that in all cases the bound subform is the subform that is set to have repeating
rows.

13.3 Subform look and feel hints and tips.

□ All subforms in the data hierarchy should be set to ‘Allow page breaks within
content’ except for the bottom-level positioned subforms where it may be desirable
to keep the form fields together. The ‘allow Page break’ will allow a set of flowing
subforms to natural flow over a page and then you can define a trailer (footer) and
header subform to be placed on the next page. These can include Referenced
Subforms. If you have a group of subforms that you want to bind together then set
the Page Break option of and then use the ‘Keep With’ Flag. An example of this is
an invoice line with special details section which could be long text that could span
one or more lines. Therefore running of the Page Break option here and setting the
keep with options will ensure if the detail line fits but the special instructions do
not it will place both on a new page.

File: FLM 290 - Developer Guide Page 61 of 76 09/09/2008

14 Index of methods for form data handling

This section describes the other methods delivered as part of FLM that can be used for
data handling in user-exits. Note the methods within the ‘/FLM/SAMPLE’ class are
commented out to enable FLM to be installed on NetWeaver servers without any SAP
Application component installed.

14.1 Get the complete address details from an address
number

/FLM/SAMPLE=> ADRNR_TO_ADDR_COMP
IM_ADRNR TYPE ADRNR Address number
EX_ADDR_COMPLETE TYPE

SZADR_ADDR1_COMPLETE
Partner complete address

This method reads the complete address details from an address number.

14.2 Get the complete address details from a partner
number

/FLM/SAMPLE=> GET_PARTNER_ADDR_COMP
IM_PARVW TYPE PARVW Partner type
IM_PARNR TYPE PARNR Partner number
EX_ADDR_COMPLETE TYPE

SZADR_ADDR1_COMPLETE
Partner complete address

This method reads the complete address details from a partner type and number.

14.3 Get e-mail address from partner number

/FLM/SAMPLE=>GET_PARTNER_ADDR_SMTP
IM_PARVW TYPE PARVW Partner type
IM_PARNR TYPE PARNR Partner number
EX_SMTP_ADDR TYPE AD_SMTPADR Partner e-mail address

This method reads the e-mail address from a partner type and number.

14.4 Get address from address number into single text
field

/FLM/SAMPLE=>ADRNR_TO_TEXT_FIELD
I_ADRNR TYPE ADRNR Address number
O_ADDRESS TYPE STRING Formatted address

File: FLM 290 - Developer Guide Page 62 of 76 09/09/2008

Note that in FLM version 261 we do not include the country in the formatted address; this
method should be cloned if any address lines are required that are missing from the
returned address.

File: FLM 290 - Developer Guide Page 63 of 76 09/09/2008

14.5 Get standard text into single text field

/FLM/SAMPLE=>READ_TEXT_TO_TEXT_FIELD
IM_TDID TYPE TDID Text ID
IM_SPRAS TYPE SPRAS Language
IM_TDNAME TYPE TDOBNAME Name
IM_TDOBJECT TYPE TDOBJECT Object
EX_TEXT TYPE STRING Output text

This method reads the contents of a standard text and concatenates them into a single
string, adding in carriage return codes at the end of each line so that the standard text is
easily formatted when bound to a form.

14.6 Prepopulate field within a subform

/FLM/SAMPLE=>FIELD_PREPOPULATE
IM_DATA TYPE /FLM/XML_TAB_T Table type for XML table
IM_SUBFORM TYPE STRING Parent subform name
IM_ROW TYPE INT3 Parent subform row instance
IM_FIELD TYPE STRING Field name
IM_VALUE TYPE STRING Field value
EX_DATA TYPE /FLM/XML_TAB_T Table type for XML table

This methods is used for repeating subform handling within form prepopulation.

14.7 Add parent paths to form data xml table

/FLM/SAMPLE=>DATA_ADD_PARENT_PATH
IM_DATA TYPE /FLM/XML_TAB_T Table type for XML table
EX_DATA TYPE /FLM/XML_TAB_T Table type for XML table

This method is used for repeating subform handling within posting adapters.

14.8 Get HR Personnel number from user id

/FLM/SAMPLE=>UNAME_GET_PERNR
IM_UNAME TYPE UNAME User Name
IM_SUBTY TYPE SUBTY DEFAULT '0001' Sub type
IM_DATUM TYPE DATUM Date
IM_OBJPS TYPE OBJPS DEFAULT '' Object ID
IM_SPRPS TYPE SPRPS DEFAULT '' Lock indicator
EX_PERNR TYPE PERSNO Personnel number

The link between a user name and the personnel number is stored in info type 0105,
subtype 0001. The method does a simple selection on table PA0105.

File: FLM 290 - Developer Guide Page 64 of 76 09/09/2008

14.9 Get User ID from HR Personnel number

/FLM/SAMPLE=>PERNR_GET_UNAME
IM_PERNR TYPE PERSNO Personnel number
IM_SUBTY TYPE SUBTY DEFAULT '0001' Sub type
IM_DATUM TYPE DATUM Date
IM_OBJPS TYPE OBJPS DEFAULT '' Object ID
IM_SPRPS TYPE SPRPS DEFAULT '' Lock indicator
EX_UNAME TYPE UNAME User Name

The link between a user name and the personnel number is stored in info type 0105,
subtype 0001. The method does a simple selection on table PA0105.

14.10 Get E-mail address from user id

/FLM/CORE=>GET_USER_EMAIL
IM_USER TYPE UNAME FLM: Form Owner
EX_EMAIL TYPE AD_SMTPADR FLM: Form Action

This method returns the e-mail address from a user’s default data.

14.11 Get E-mail address from HR Personnel number

/FLM/SAMPLE=>PERNR_GET_EMAIL
IM_SUBTY TYPE SUBTY DEFAULT '0010' Sub type
IM_DATUM TYPE DATUM Date
IM_OBJPS TYPE OBJPS DEFAULT '' Object ID
IM_SPRPS TYPE SPRPS DEFAULT '' Lock indicator
IM_PERNR TYPE PERSNO Personnel number
EX_EMAIL TYPE /FLM/EMAIL_RECE E-mail address

The Link between a personnel number and their e-mail address is stored in info type 0105,
subtype 0010. This method performs a simple selection on table PA0105.

14.12 Navigate HR organisational structure

/FLM/SAMPLE=>PERNR_GET_MANAGER
IM_PERNR TYPE HROBJID Personnel number
IM_PLVAR TYPE PLVAR DEFAULT '10' Plan Version
IM_DATUM TYPE DATUM Date
IM_PERNR_PROLE_RELAT TYPE RELAT DEFAULT '008' Relationship Between

Objects
IM_PROLE_DEPT_RELAT TYPE RELAT DEFAULT '003' Relationship Between

Objects
IM_DEPT_SROLE_RELAT TYPE RELAT DEFAULT '012' Relationship Between

Objects
IM_SROLE_SPERNR_RELAT TYPE RELAT DEFAULT '008' Relationship Between

Objects
EX_SPERNR TYPE HROBJID Manager Personnel number

File: FLM 290 - Developer Guide Page 65 of 76 09/09/2008

This method performs several selections on table HRP1001 passing in relationships to find
an employee’s supervisor.

Note that this works only with the structure desribed below, and a check is required
afterwards in case the employee passed in was a supervisor: in practise we may need to
clone this method depending on the organisational structure in HR.

Dept [O]

B003-> Employee role [S]
 A008-> Employee [P]

B012-> Supervisor role[S]
 A008-> Supervisor [P]

14.13 Get previous form owner

/FLM/CORE=>GET_FORM_PREV_OWNER
IM_CCODE TYPE /FLM/CUST_CODE SFS: Customer Code
IM_FTYPE TYPE /FLM/FTYPE_CODE SFS: Form Type
IM_FLANG TYPE /FLM/FLANG FLM: Form Language
IM_FVER TYPE /FLM/FVER FLM: Form Version
IM_FID TYPE /FLM/FID FLM: Form ID
IM_FID_VAR TYPE /FLM/ID_VAR FLM: Form Variant
VALUE(RE_OWNER) TYPE XUBNAME User Name in User Master

Record

This method finds the last previous form owner. It is useful for owner derivation within
workflow user-exits for rejection actions.

14.14 Get previous form actioner

/FLM/CORE=>GET_FORM_PREV_ACTIONER
IM_CCODE TYPE /FLM/CUST_CODE SFS: Customer Code
IM_FTYPE TYPE /FLM/FTYPE_CODE SFS: Form Type
IM_FLANG TYPE /FLM/FLANG FLM: Form Language
IM_FVER TYPE /FLM/FVER FLM: Form Version
IM_FID TYPE /FLM/FID FLM: Form ID
IM_FID_VAR TYPE /FLM/ID_VAR FLM: Form Variant
IM_ACTION TYPE /FLM/FACTION FLM: Form Action
VALUE(RE_OWNER) TYPE XUBNAME User Name in User Master

Record

This method finds the last previous form owner who performed a specific action. It is
useful for owner derivation within workflow user-exits for rejection actions.

File: FLM 290 - Developer Guide Page 66 of 76 09/09/2008

14.15 Get form name

/FLM/CORE=>GET_FORM_NAME
IM_CCODE TYPE /FLM/CUST_CODE FLM: Customer Code
IM_FTYPE TYPE /FLM/FTYPE_CODE FLM: Form Type
IM_FLANG TYPE SPRAS Language
IM_FVER TYPE /FLM/FVER FLM: Form Version
VALUE(EX_FNAME) TYPE /FLM/FNAME_L SFS: Long Form Name

This method returns the long name for a form type.

14.16 Get form current owner

/FLM/CORE=>GET_FORM_OWNER
IM_CCODE TYPE /FLM/CUST_CODE SFS: Customer Code
IM_FTYPE TYPE /FLM/FTYPE_CODE SFS: Form Type
IM_FLANG TYPE /FLM/FLANG FLM: Form Language
IM_FVER TYPE /FLM/FVER FLM: Form Version
IM_FID TYPE /FLM/FID FLM: Form ID
IM_FID_VAR TYPE /FLM/ID_VAR FLM: Form Variant
VALUE(RE_OWNER) TYPE XUBNAME User Name in User Master

Record

This method returns the current owner for a form.

14.17 Get form current status

/FLM/CORE=>GET_FORM_STATUS
IM_CCODE TYPE /FLM/CUST_CODE SFS: Customer Code
IM_FTYPE TYPE /FLM/FTYPE_CODE SFS: Form Type
IM_FLANG TYPE /FLM/FLANG FLM: Form Language
IM_FVER TYPE /FLM/FVER FLM: Form Version
IM_FID TYPE /FLM/FID FLM: Form ID
IM_FID_VAR TYPE /FLM/ID_VAR FLM: Form Variant
VALUE(RE_FSTATUS) TYPE /FLM/FSTATUS User Name in User Master

Record

This method returns the current status of a form.

File: FLM 290 - Developer Guide Page 67 of 76 09/09/2008

15 Javascript Samples

A great deal of functionality is best achieved using on-form JavaScript in the Adobe
Designer template. To enter Javascript, select the relevant object (e.g. field, button),
check that the language is set to Javascript, select the event to which it applies and enter
it into the script window:

In this example, script is being entered into the exit event of ‘Dropdown 1’

15.1 Add a row [Javascript]
 Here ‘ITEM’ is the subform.
This code will typically sit behind the click event of a pushbutton.
Also we set the presence of a deletion button when there are multiple rows present.
_ITEM.addInstance(1)
subtracta.presence = "visible";

15.2 Remove a row [Javascript]
Here ‘ITEM’ is the subform.
Again this code will sit behind the click event of a pushbutton for deletion.
With this code we ensure that there is always at least one instance of the subform; we
hide the deletion button when the row count is ‘1’.
var nRowCount_e = _ITEM.count;
if (nRowCount_e == 1)
{
 _ITEM.removeInstance(0);
 this.presence = "invisible";

File: FLM 290 - Developer Guide Page 68 of 76 09/09/2008

}
else
{
 _ITEM.removeInstance(nRowCount_e - 1);
}

15.3 Remove a specific row [Javascript]
Here ‘ITEM’ is the subform. We would use this code if we put a pushbutton within the
repeating subform.
_ITEM.removeInstance(this.parent.index);

15.4 FLM ‘Submit’ button [Javascript]
Here we trigger either the SAP call or the offline e-mail based on the value of the
FTRANSPORT variable.
soUtils.lockDownForm(xfa.resolveNode("xfa.form"),true);

if (FTRANSPORT.value == "1")
{
 ContainerFoundation_JS.SendMessageToContainer(event.target, "submit",
"", "", "", "");
}
else
{
 event.target.submitForm({cURL: "mailto:" + RET_EMAIL.value,
 bEmpty: true, // Post all fields (true), or do Not
post all fields (false)
 cSubmitAs: RET_FILE_TYPE.value});
}

15.5 FLM ‘Check’ button [Javascript]
Here we set the action to ‘C’.
var sRetVars = CCODE.value + "-" +
 FTYPE.value + "-" +
 FLANG.value + "-" +
 FVER.value + "-" +
 FID.value + "-" +
 FID_VAR.value + "+" +
 REC_EMAIL.value;

var sAction = FLM_ACTION.rawValue;

 sRetVars = "C" + "+" + sRetVars;
 Button2.access = "open";

FLM_RETURN.rawValue = sRetVars;

if (FTRANSPORT.value == "1")
{
 ContainerFoundation_JS.SendMessageToContainer(event.target, "check",
"", "", "", "");
}

File: FLM 290 - Developer Guide Page 69 of 76 09/09/2008

15.6 Total fields within a subform [Javascript]
Since the fields are in the same subform we don’t need to define the full path.
this.rawValue = (fld_1.rawValue + fld_2.rawValue + fld_3.rawValue);

15.7 Total the same field for a repeating subform
[Javascript]

Use the following script:
//Define our count variable
var iTotalHrs = 0;

//Define your XPATH to the the repeating subform, and store in a Variable
var vNode =
"xfa.form.WorkSheet.Fred_Form.Work_Order.Work_Order_Details.Employee_Detail
s";

//Count how many items we have
//NB This uses the resolveNodes method which will return an object which we
can use to get the length
//This will tell use how many objects we have, NB it is zero based.
var objRootItem = xfa.resolveNodes(vNode + "[*]");

//Check we have at least one subform created.
if (objRootItem.length > 0)
{

 //Now loop through all subforms
 for (var i=0; i<objRootItem.length; i++)
 {
 //Set the current Position
 var sPos = "[" + i + "]"

 //Now Query the child node and gets it value
 iTotalHrs = iTotalHrs + xfa.resolveNode(vNode + sPos +
".TotalHrs").rawValue;

 }

}

//Now set the value of this object to the calculated value
this.rawValue = iTotalHrs;

15.8 Count the number of rows in a subform
//Define your XPATH to the the repeating subform, and store in a Variable
var vNode =
"xfa.form.WorkSheet.Fred_Form.Work_Order.Work_Order_Details.Employee_Detail
s";

//Count how many items we have
//NB This uses the resolveNodes method which will return an object which we
can use to get the length
//This will tell use how many objects we have, NB it is zero based.
var objRootItem = xfa.resolveNodes(vNode + "[*]");

File: FLM 290 - Developer Guide Page 70 of 76 09/09/2008

//Store how many subforms we have, NB this is zero based
var TotalNo = objRootItem.length;

15.9 Hide a field if there is no data within it
This will be placed in the initiliaze event if thi action occurs when the form is loaded.
if (this.rawValue == null ||
 this.rawValue == "")
{
 this.presence = "hidden";
}
else
{
 this.presence = "visible";
}

If you want the field to be shown or hidden while working on the form then
you can use the calculate event.
NB The last line in the Calculate event is very critical otherwise this
field will have the value of
hidden or visible

if (this.rawValue == null ||
 this.rawValue == "")
{
 this.presence = "hidden";
}
else
{
 this.presence = "visible";
}

//This is needed as by defualt this script will always assign the
//field the last value on the RHS
this.rawValue = this.rawValue;

15.10 Fill the fields of one drop-down list depending on
the value selected of another drop-down list.

//The Following code shows this example using the Calculate event of a drop
down
//NB That this code uses the default FLM Format for Paired (ID|VALUE) and
Linked
//(ID|VALUE;LINKED_ID) Arrays. Below is an example
//Parent Array will have an ID|Value and elements in the array are
seperated by ;
//001|Category1;002|Category2;003|Category3
//This will produce a drop down with three elements the ID being 001 002
003
//and the Value being Category 1 Category 2 Category 3
//The Child Array with the link to the parent will look like this
//0001|Cat1 Data1;001#0002|Cat1 Data2;001#0003|Cat2 Data1;002#0004|Cat3
Data1;003#0005|Cat3 Data2;003
//Which wiil produce Child IDs od 0001 0002 0003 0004 0005
//which will have Values of Cat1 Data1 Cat1 Data2 Cat2 Data1 Cat3 Data1
Cat3 Data2

File: FLM 290 - Developer Guide Page 71 of 76 09/09/2008

//And will be linked to the Corresponding Parent Item by the Linked ID 001
for the First 2 Items
//Linked ID 002 for the third item and Linked ID 003 for the Last two
//So if a user select the parent object as 002 Category 2
//then the child Drop Down would only show the item 0003 Cat2 Data1

//The below shows the code shows how to do this

//This code needs the Script Object soDropDownComplex
//And we use the method populateLinkedByName

//So we call the method populateLinkedByName
//
//This will first cache the value currently selected
//
//it will then rebuild the drop down using the values
//passed in the second param which hold the cached drop down values
//this is in the format of value;value
//
//Next it will check the cached value and if that is part of the new drop
down
//will set that value back
//
//The First Param is the drop down XPATH, which will be populated
//The Second Param is the hidden field storing the Drop Down values in a
seperated list
//The Last Param will the linked (Parent ID) to populate this list by, so
only items with
//that Linked ID will be added

//First we need to get the LinkedID, so we query the parent Object and its
its item
//in this example we know we display the value and not the ID
var sLinkedName = xfa.form.DATA.MAIN.Header.FR2.rawValue;

//So the next thing we need to do is get the ID for that Item so we use the
method
//getSimpleElementByID and request the 0 element which is the ID (Element 1
would be the name, and can be used to check
//if a Value exists in the array)
var sLinkedID =
soDropDownComplex.getSimpleElementByName(xfa.form.DATA.MAIN.Header.FR1.somE
xpression,sLinkedName,0);

//Now we call the method populateLinkedByName as described above
var sDropDownValue =
soDropDownComplex.populateLinkedByName(this.somExpression,
FS1_1.somExpression, sLinkedID);

//As we using the calculate event we need to get the value returned
//from the method and set this as the current value, if the current item it
will be ""
//otherwise it would carry over the previous stored value
this.rawValue = sDropDownValue;

There are several ways to acheive cascading drop-down lists.

File: FLM 290 - Developer Guide Page 72 of 76 09/09/2008

For example, a web-service could be called by a form action in order to fill one drop-down
list given the selection in another form field – this would work for on-line forms.
See the attached example template FLM_ACL_CDD1_E_00.xdp for another example using
data arrays.

15.11 Lock Down Elements on a form
This will be placed in the initiliaze event if thi action occurs when the form is loaded.
if (this.rawValue == null ||
 this.rawValue == "")
{
 this.presence = "hidden";
}
else
{
 this.presence = "visible";
}

If you want the field to be shown or hidden while working on the form then
you can use the calculate event.
NB The last line in the Calculate event is very critical otherwise this
field will have the value of
hidden or visible

if (this.rawValue == null ||
 this.rawValue == "")
{
 this.presence = "hidden";
}
else
{
 this.presence = "visible";
}

//This is needed as by defualt this script will always assign the
//field the last value on the RHS
this.rawValue = this.rawValue;

15.12 Calculate Difference between Two Dates
//This relies on the function dateDiff which should be
//available in the soDate Script Object

//First we need to get our two dates
//NB That getting rawValue will mean the date is in the correct
//format which is YYYY-MM-DD
var dDate1 = xfa.form.DATA.MAIN.Header.FR1.rawValue;
var dDate2 = xfa.form.DATA.MAIN.Header.FR2.rawValue;

//Check to make sure we have two values
if (dDate1 != null && dDate2 != null)
{
 //Now Pass the Dates, the first param is the Start Date
 //The second is the End Date
 var iDiff = soDate.dateDiff(dDate1,dDate2);

 //Now display the Difference

File: FLM 290 - Developer Guide Page 73 of 76 09/09/2008

 xfa.host.messageBox("Difference in Dates is = " + iDiff);

}

15.13 Validate a Date
//This relies on the function dateValid which should be
//available in the soDate Script Object

//Get the rawValue this is needed as the
//internal format for dates is YYYY-MM-DD
var dDate = xfa.form.DATA.MAIN.Header.FR1.rawValue;

//Now call the dateValid Method
if (soDate.dateValid(dDate) == false)
{
 xfa.host.messageBox("date in not correct.");
}

15.14 Set Focus on a Field
//This code is place in the exit event
//and will set focus back to the same field

//NB the property somExpression will hold the complete XPATH for the field
 xfa.host.setFocus(this.somExpression);

15.15 Use Document Variables
//NB That the Background Colour on the object must be set to Solid for this
to work
//Also based upon the layout of the object you can get different effects

//This is also useful in the Enter and Exit events to show the current
field
//Set to Yellow On Enter
//this.fillColor = COLOUR_YELLOW.value;
//Set to White On Exit
//this.fillColor = COLOUR_WHITE.value;

//One Last thing to note is that Document Variables will always revert to
the stored
//value set at design time when the form is opened or re-opened.

//Now set it colour to red
xfa.form.DATA.MAIN.Header.FR1.fillColor = COLOUR_RED.value;

xfa.form.DATA.MAIN.Header.FR2.fillColor = COLOUR_RED.value;

File: FLM 290 - Developer Guide Page 74 of 76 09/09/2008

16 Web Services

16.1 Designer-based web services

Web Services can be accessed via the data connection functionality in Adobe Designer. Go
to File> New Data Connection and select the location of the required file.

16.2 FLM-based Web Services

 FLM ships with a VAT registration validation web service stored in /FLM/WS_LIB_1.

To make use of this web service, you will need to

1. create two fields on the form: one into which the VAT country code is entered, and
one to contain the VAT number itself. Call these fields “COUNTRY” and
“VAT_NUMBER”.

2. Create a third field, called ‘IS_VALID’, type = checkbox, and assign it a derivation
routine

3. In the field-level userexit activity, enter the following code behind the derivation
userexit:

DATA: l_country(2) TYPE c,
 l_vat_number TYPE string,
 l_data TYPE /flm/xml_tab,
 l_valid TYPE flag,
 l_message TYPE string,
 l_var TYPE symsgv,
 l_v1 TYPE symsgv,
 l_succ_mess TYPE string.
*
 CLEAR: l_country,
 l_vat_number,
 l_valid,
 l_message.

 READ TABLE im_data INTO l_data WITH KEY name = 'COUNTRY'.
 l_country = l_data-value.
*
 READ TABLE im_data INTO l_data WITH KEY name = 'VAT_NUMBER'.
 l_vat_number = l_data-value.
*
 CHECK l_country IS NOT INITIAL AND
 l_vat_number IS NOT INITIAL.
*
 CALL METHOD /flm/ws_lib_1=>eu_vat_registration_check
 EXPORTING
 im_country_code = l_country
 im_vat_number = l_vat_number
 im_port_name = 'DEFAULT'
 IMPORTING
 ex_valid = l_valid
 ex_message = l_message.
*

File: FLM 290 - Developer Guide Page 75 of 76 09/09/2008

* Dispatch log message
*
 IF l_message IS NOT INITIAL.
*
 MOVE l_message(20) TO l_succ_mess.
*
 ELSE.
*
 IF l_valid IS INITIAL.
 MOVE 'Not Valid ' TO l_succ_mess.
 ELSE.
 MOVE 'Valid' TO l_succ_mess.
 ENDIF.
*
 ENDIF.
*
 CONCATENATE 'EU VAT check for' l_country '/' l_vat_number ':' l_succ_mess
 INTO l_v1 SEPARATED BY space.
*
 CALL METHOD /flm/core=>error
 EXPORTING
 im_type = /flm/core=>c_mess_success
 im_number = '997'
 im_v1 = l_v1.
*
 IF l_message IS NOT INITIAL.
*
 l_var = l_message.
 ex_mess_num = '002'.
 ex_msgvar1 = l_var.
 ex_response = 'A'.
 CALL METHOD /flm/core=>error
 EXPORTING
 im_type = /flm/core=>c_mess_warning
 im_number = '002'
 im_v1 = l_var.
*
 ELSE.
*
 ex_value = l_valid.
*
 ENDIF.

4. Save

The checkbox will be ticked if the VAT number supplied is valid.

File: FLM 290 - Developer Guide Page 76 of 76 09/09/2008

	1 Preliminary form creation tasks
	1.1 Define Form Statuses
	1.2 Define Form Actions
	1.3 Define Form Categories

	2 First Form Tutorial
	2.1 Creating the Data Definition of a Form in SAPGUI
	2.2 Designing the layout in Adobe Designer
	2.3 Adding Business Logic
	2.4 Form Routing
	2.5 Launching the form in the portal

	3 Creating a Form Data Schema in the Wizard
	3.1 Specify Form Type Details
	3.2 Form Data Structure
	3.2.1 Subforms
	3.2.2 Fields
	3.2.2.1 Field Types
	3.2.2.2 Read and Post Routines
	3.2.2.3 Field Editing

	3.3 Specify Location for XML Data Definition File
	3.4 Alternate Adobe Designer Templates
	3.5 Form Options
	3.5.1 Transport Options
	3.5.2 Runtime Options
	3.5.3 Form Category

	3.6 Summary

	4 Field User-exits
	4.1 Field-level prepopulation
	4.2 F4 Possible entries
	4.3 Derivation
	4.4 Substitution
	4.5 Validation

	5 Form User-exits
	5.1 Form-level pre-population
	5.2 E-mail address derivation
	5.2.1 Offline form triggered for form distribution list
	5.2.2 Offline form triggered by FLM Routing Server

	5.3 Workflow (FLM Routing Server)
	5.4 Version
	5.5 Language
	5.6 Indexing
	5.7 Enqueue/Dequeue

	6 Default Form
	6.1 Maintain Default Form
	6.2 Preview Default Form

	7 Form Template and Package Handling
	7.1 Exporting and Importing Form Packages
	7.1.1 Export Form Package
	7.1.2 Import Form Package
	7.1.3 Upload Form Template
	7.1.4 Download Form Template

	8 Form Routing, Configuration and Email Setup
	8.1 Form Routing
	8.1.1 Form Owner Determination

	8.2 Form Status Determination
	8.3 E-mail Reminder Settings
	8.4 E-mail Settings
	8.5 Define Approved Email Addresses

	9 IMG Execution Tools
	9.1 System Log
	9.2 Preview Default Form
	9.3 ADS Performance testing
	9.4 List CMS Documents

	10 Form Posting Engine (FPE)
	10.1 Processing Control
	10.2 Valid FPE status.
	10.3 FPE function control
	10.4 Process Functions
	10.5 Invoking FPE
	10.6 Posting adapter coding

	11 FLM Routing Server
	11.1 Using the Routing Tables for Form Submission.
	11.1.1 Table /FLM/WF_STAT: Form Status Derivation
	11.1.2 Table /FLM/WF_USER: Form owner Derivation
	11.1.3 User-exits
	11.1.4 Variable substitution in e-mail standard texts

	11.2 FLM Routing Server for triggering Off-line forms.
	11.2.1 Table /FLM/EMAIL: Off-line form e-mail settings

	11.3 FLM Routing Server for Form Escalation.
	11.3.1 Table /FLM/WF_ESCA: Form Escalation settings

	11.4 FLM Routing Server for Reminder E-mails.
	11.4.1 Table /FLM/WF_REMI: Form Reminder settings

	11.5 Portal task instructions

	12 Correspondence Generation
	12.1 Developing a letter template and texts

	13 Form Structure
	13.1 Data hierarchy
	13.2 Subform definition and binding
	13.2.1 Binding for non-repeating subforms.
	13.2.2 Binding for repeating subforms.
	13.2.3 Binding for nested subforms.

	13.3 Subform look and feel hints and tips.

	14 Index of methods for form data handling
	14.1 Get the complete address details from an address number
	14.2 Get the complete address details from a partner number
	14.3 Get e-mail address from partner number
	14.4 Get address from address number into single text field
	14.5 Get standard text into single text field
	14.6 Prepopulate field within a subform
	14.7 Add parent paths to form data xml table
	14.8 Get HR Personnel number from user id
	14.9 Get User ID from HR Personnel number
	14.10 Get E-mail address from user id
	14.11 Get E-mail address from HR Personnel number
	14.12 Navigate HR organisational structure
	14.13 Get previous form owner
	14.14 Get previous form actioner
	14.15 Get form name
	14.16 Get form current owner
	14.17 Get form current status

	15 Javascript Samples
	15.1 Add a row [Javascript]
	15.2 Remove a row [Javascript]
	15.3 Remove a specific row [Javascript]
	15.4 FLM ‘Submit’ button [Javascript]
	15.5 FLM ‘Check’ button [Javascript]
	15.6 Total fields within a subform [Javascript]
	15.7 Total the same field for a repeating subform [Javascript]
	15.8 Count the number of rows in a subform
	15.9 Hide a field if there is no data within it
	15.10 Fill the fields of one drop-down list depending on the value selected of another drop-down list.
	15.11 Lock Down Elements on a form
	15.12 Calculate Difference between Two Dates
	15.13 Validate a Date
	15.14 Set Focus on a Field
	15.15 Use Document Variables

	16 Web Services
	16.1 Designer-based web services
	16.2 FLM-based Web Services

