

Author: Chris Scott

File name: 260 Developer Guide

Version: 1

Distribution: Project team

FLM Developer Guide

ABAP/4 Developments

File: 260 Developer Guide Page 2 of 19 17/08/2007
Author: Chris Scott

Version History
Version Author(s) Reason for update

1 Chris Scott Initial release of the document

Table of Contents
1 Form User-exits .. 3

1.1 Form-level pre-population.. 3
1.2 E-mail address derivation... 5
1.3 Workflow (FLM Routing Server) .. 6
1.4 Version ... 6
1.5 Language .. 6

2 Field User-exits .. 7
2.1 Field-level prepopulation ... 7
2.2 Possible entries... 7
2.3 Derivation ... 8
2.4 Substitution ... 8
2.5 Validation.. 9

3 Offline Forms ..10
3.1 Offline form triggered by FLM Output ... 10
3.2 Offline form triggered for form distribution list 10
3.3 Offline form triggered by FLM Routing Server.. 10

4 Posting Adapters ..11
4.1 Posting adapter coding ... 11

5 Output Forms..13
5.1 Output forms triggered by SAP application output 13
5.2 Output forms triggered for form distribution list 13
5.3 HR output forms... 13
5.4 FI output forms .. 14

6 Index of methods for form data handling..15
6.1 Get the complete address details from an address number 15
6.2 Get the complete address details from a partner number 15
6.3 Get e-mail address from partner number ... 15
6.4 Get address from address number into single text field.............................. 15
6.5 Get standard text into single text field ... 16
6.6 Prepopulate field within a subform .. 16
6.7 Add parent paths to form data xml table ... 16
6.8 Get HR Personnel number from user id.. 16
6.9 Get User ID from HR Personnel number ... 17
6.10 Get E-mail address from user id .. 17
6.11 Get E-mail address from HR Personnel number .. 17
6.12 Navigate HR organisational structure .. 17
6.13 Get previous form owner .. 18
6.14 Get previous form actioner.. 18
6.15 Get form name .. 19
6.16 Get form current owner.. 19
6.17 Get form current status .. 19

File: 260 Developer Guide Page 3 of 19 17/08/2007
Author: Chris Scott

1 Form User-exits

Form-level user exits are accessed via transaction /FLM/FORM_MANAGER.
All user-exits are available to all form types; there is no dependency on settings selected
in the New Form Wizard.

1.1 Form-level pre-population
The following data is available within pre-population user-exits:

<g_data> Internal table of type /FLM/XML_TAB_T storing all current form data
 and one instance of each field.

<g_ccode> 3-character customer code.

<g_ftype> 4-character form type.

<g_doc> 10-character document number if passed in. This is used for the offline form

scenario triggered by application document output.

<g_user> The user id. For offline processing this is the user determined by

/FLM/CORE->GET_OFFLINE_USER (stored on the customer code table.) For
online processing this is the user id passed in by FLM Portal.

The form level pre-population user-exit can be used to prepopulate any field on the form.
It can also be used to create instances of repeating subforms to pre-populate fields within
row data – or nested subforms down to 3 levels of nesting.

The return parameter is ‘ex_data’, which is an internal table of type /FLM/XML_TAB_T.
This parameter is set to equal <g_data> before the user-exit is called.

It is easier to update fields that are in non-repeating subforms with a field user-exit, as in
this case there is no need to handle the internal table.

However, if the same table selections or programming logic is required to determine
several form fields, then it is easier to use the logic just once, at the form level.

The syntax for updating fields in non-repeating subforms is:

READ TABLE ex_data WITH KEY name = 'EBELN' INTO l_data.
IF sy-subrc eq 0.
 MOVE wa_header-ekko-ebeln TO l_data-value.
 MODIFY ex_data INDEX sy-tabix FROM l_data.
ENDIF.

File: 260 Developer Guide Page 4 of 19 17/08/2007
Author: Chris Scott

The syntax for filling fields within a repeating subform called ‘ITEM’ from an internal table
‘itab’ is:

 DATA: l_index TYPE sytabix,
 l_item_row(3) TYPE n,
 l_item_subform TYPE string,
 l_data_value TYPE string,
 l_data TYPE /flm/xml_tab.
*
 FIELD-SYMBOLS:
 <itab> TYPE itab.
*
 LOOP AT itab ASSIGNING <itab>.
 l_item_row = sy-tabix.
*
 move <itab>-ebelp to l_data_value.
 CALL METHOD /flm/sfs=>field_prepopulate
 EXPORTING
 im_data = ex_data
 im_subform = 'ITEM' “Subform name
 im_row = l_item_row
 im_field = 'EBELP' “Field name
 im_value = l_data_value
 IMPORTING
 ex_data = ex_data.
*
 ...
 ENDLOOP.

File: 260 Developer Guide Page 5 of 19 17/08/2007
Author: Chris Scott

1.2 E-mail address derivation
This user-exit returns an internal table of e-mail addresses and is used when an offline
form is required to be dispatched to multiple recipients.

The following import parameters are available:

• IM_EMAIL_STAT-CCODE Customer code
• IM_EMAIL_STAT-FTYPE Form type
• IM_EMAIL_STAT-FLANG Language
• IM_EMAIL_STAT-FVER Form version
• IM_EMAIL_STAT-STAT_IN Form status
• IM_EMAIL_STAT-RECEIV_ADDR Receiver’s e-mail address
• IM_EMAIL_STAT-EMAIL_TITLE E-mail title text
• IM_EMAIL_STAT-EMAIL_BODY E-mail body text
• IM_EMAIL_STAT-EMAIL_ATT_NAME E-mail attachment text
• IM_DOCUMENT Application document number

The export parameter is EX_EMAIL_ADDRS which is an internal table with structure
/FLM/EMAIL. We can update the following fields only within this structure:

• RECEIV_ADDR Receiver’s e-mail address
• EMAIL_TITLE E-mail title text
• EMAIL_BODY E-mail body text
• EMAIL_ATT_NAME E-mail attachment text

In this user-exit we can read the document data (using the document number) to find the
partner number and then read the e-mail address from the partner’s address details.
The syntax required is:

Data: wa_email TYPE /flm/email,

l_smtp_addr TYPE ad_smtpadr.

call method /flm/sfs-> GET_PARTNER_ADDR_SMTP
 EXPORTING
 im_parvw = im_parvw
 im_parnr = im_parnr
 IMPORTING
 ex_smtp_addr = l_smtp_addr.

Wa_email = IM_EMAIL_STAT.
wa_email-RECEIV_ADDR = l_smtp_addr
APPEND wa_email TO ex_email_addrs.

Note: In FLM version 2.4 we cannot pass in the partner from the NAST record for
offline forms. Instead we need to start with document data in the user-exit.

File: 260 Developer Guide Page 6 of 19 17/08/2007
Author: Chris Scott

1.3 Workflow (FLM Routing Server)
The workflow user-exit can be used to determine the subsequent form owner, version,
status and set flags to trigger the sending of an offline form or notification e-mail in the
case of online forms.

The following import parameters are available:

• im_action Action
• im_instance Form instance (contains form type, form id etc)
• im_ftransport Online/Offline flag
• im_owner Form owner
• im_remind E-mail notification flag
• im_status Form status

The following export parameters are available:

• ex_owner New owner
• ex_ftransport Online/Offline flag
• ex_fver New version
• ex_remind E-mail notification flag
• ex_status New status

Typically the logic for determining the new workflow options will be driven by custom
tables or by navigating the HR organisational structure.

1.4 Version
A new version can be determined prior to form rendering using the version user-exit.
There are no import parameters in FLM version 2.4, so the version can only be derived
from the customer code, form type and system variables/constants/TVARV variables etc.
The export parameter is ex_version.

1.5 Language
A new language can be determined prior to form rendering using the language user-exit.
There are no import parameters in FLM version 2.4, so the language can only be derived
from the customer code, form type and system variables/constants/TVARV variables etc.
The export parameter is ex_lang.

File: 260 Developer Guide Page 7 of 19 17/08/2007
Author: Chris Scott

2 Field User-exits

The following data is available within all field-level user-exits:

<g_data> Internal table of type /FLM/XML_TAB_T storing all current form data
 and one instance of each field.

<g_ccode> 3-character customer code.

<g_ftype> 4-character form type.

<g_field> The name of the currently selected field.

2.1 Field-level prepopulation
In addition to the core data, the following fields are available:

<g_value> The value of the currently selected field.

<g_doc> 10-character document number if passed in. This is used for the offline form

scenario triggered by application document output.

<g_user> The user id. For offline processing this is the user determined by

/FLM/CORE->GET_OFFLINE_USER (stored on the customer code table.) For
online processing this is the user id passed in by FLM Portal.

The export parameter is ex_value, which has type ‘string’.

2.2 Possible entries
In addition to the core data, the following fields are available:

<g_doc> 10-character document number if passed in. This is used for the offline form

scenario triggered by application document output.

<g_user> The user id. For offline processing this is the user determined by

/FLM/CORE->GET_OFFLINE_USER (stored on the customer code table.) For
online processing this is the user id passed in by FLM Portal.

The export parameter is ex_form_data, which is an internal table with two fields, name
and value.

Note: In FLM version 2.4, the derived data value needs to be written to the ‘name’
field and the data description needs to be written to the ‘value’ field.

File: 260 Developer Guide Page 8 of 19 17/08/2007
Author: Chris Scott

The required syntax is of the form:

 DATA: l_form_data TYPE /flm/form_data.
 MOVE '0' TO l_form_data-name.
 MOVE 'OFF' TO l_form_data-value.
 APPEND l_form_data TO ex_form_data.

2.3 Derivation
In addition to the core data, the following fields are available:

<g_return> The ‘return’ field submitted back from the form. This has the structure:

<ACTION> + <CUSTOMER CODE> - <FORM TYPE> - <LANGUAGE> - <VERSION>
- <FORM ID> - <VARIANT> + <RECIPIENT EMAIL ADDRESS>

<g_path> The path of the currently selected field

<g_value> The value of the currently selected field

Changes to <g_value> cause the field value to change before posting.

All fields need to already exist on the form – we cannot derive a field in a new instance of
a subform through the derivation user-exit.

To read values in the <g_return> field we need to split the field as follows:

SPLIT <g_return> AT '+' INTO l_action l_cms_doc l_rec_email.

Then we can split the cms document reference using the method
/FLM/CORE-> SPLIT_XDP_CMS_DOC.

2.4 Substitution
In addition to the core data, the following fields are available:

<g_return> The ‘return’ field submitted back from the form. This has the structure:

<ACTION> + <CUSTOMER CODE> - <FORM TYPE> - <LANGUAGE> - <VERSION>
- <FORM ID> - <VARIANT> + <RECIPIENT EMAIL ADDRESS>

<g_path> The path of the currently selected field

<g_value> The value of the currently selected field

Changes to <g_value> cause the field value to change before posting.

File: 260 Developer Guide Page 9 of 19 17/08/2007
Author: Chris Scott

2.5 Validation
In addition to the core data, the following fields are available:

<g_return> The ‘return’ field submitted back from the form. This has the structure:

<ACTION> + <CUSTOMER CODE> - <FORM TYPE> - <LANGUAGE> - <VERSION>
- <FORM ID> - <VARIANT> + <RECIPIENT EMAIL ADDRESS>

<g_path> The path of the currently selected field

<g_value> The value of the currently selected field

The export parameters are:

• ex_response String composed of one or several of the following codes:
A On-Line - Error - reject form

 B On-Line - Warning - log event
 C Off-Line - Warning - log event
 D Off-Line - Error - return form
 E Off-Line - Error - delete form

• ex_mess_num Message number from class /FLM/SFS
• ex_msgvar1 Error variable 1
• ex_msgvar2 Error variable 2
• ex_msgvar3 Error variable 3
• ex_msgvar4 Error variable 4

Note: in FLM version 2.4 the message class is always ‘FLM/SFS’ which is in the FLM
namespace and should not be changed. It is therefore recommended to use message
number 999 and pass in the validation text as one of the message variables.

The syntax should take the following form:
if <g_value> is INITIAL.
 ex_response = 'A'.
 ex_mess_num = '999'.
 ex_msgvar1 = 'Initial field not permitted'.
 ex_msgvar2 = <g_field>.
 ex_msgvar3 = space.
 ex_msgvar4 = space.
endif.

File: 260 Developer Guide Page 10 of 19 17/08/2007
Author: Chris Scott

3 Offline Forms

3.1 Offline form triggered by FLM Output
The email user-exit described above is always used to determine the e-mail recipient for
an offline form.

3.2 Offline form triggered for form distribution list
The email user-exit described above is always used to determine a distribution list.
The offline form will be triggered by the FLM offline submissions utility or by a custom
program that calls function module /FLM/OFFLINE_FORM_SUBMIT.

3.3 Offline form triggered by FLM Routing Server
The normal email user-exit is triggered for the determination of e-mail recipients for
offline forms triggered by FLM Routing configuration or user-exit.

File: 260 Developer Guide Page 11 of 19 17/08/2007
Author: Chris Scott

4 Posting Adapters

4.1 Posting adapter coding
All posting adapters must have the following import parameters:
FORMS_DATA TYPE /FLM/XML_TAB_T
SEQUENCE TYPE /FLM/PROCESS_SEQ
DIALOGUE_MODE TYPE CHAR1

And the following export parameters:
POSTED_DOC TYPE /FLM/PDOC
RETURN TYPE BAPIRETURN1
NO_POST_ATTEMP TYPE FLAG

Normally the posting adapter will loop around the FORMS_DATA internal table, taking the
data from the form and filling other internal tables and/or structures required as import
parameters by BAPIs to make the final SAP update.

Any BAPI returns are passed back and and generated document number is also returned.

TYPES: t_return TYPE TABLE OF bapireturn,

DATA: subform_tab TYPE /FLM/XML_TAB_T ,
 subform_wa_t TYPE /FLM/XML_TAB_T.
 w_return TYPE t_return,
 path_tab TYPE TABLE OF string,
 l_path_part TYPE string,
 l_parent_path TYPE string,
 l_parent_path_c(80) TYPE c,
 l_parent_path_len TYPE i,
 l_subform(3) TYPE n,
 t_lines TYPE i.

Call method /FLM/SFS-> DATA_ADD_PARENT_PATH passing in FORMS_DATA and receiving
back SUBFORM_TAB.

Now we have all the parent paths we can loop at this to get all the form data for a
particular instance of a subform.

Use the following syntax for fields in non-repeating subforms:
 READ TABLE forms_data ASSIGNING <f_formfld>
 WITH KEY name = 'DELIV_EXT'.
 <bapi_import_structure-field> = <f_formfld>-value.

File: 260 Developer Guide Page 12 of 19 17/08/2007
Author: Chris Scott

Use the following sytax for fields in repeating subforms:
* Get the first occurance of an item field:
READ TABLE subform_tab ASSIGNING <subform>
 WITH KEY name = 'MATNR'.

 l_parent_path_c = <subform>-parent_path.
 l_parent_path_len = STRLEN(l_parent_path_c) - 3.
 l_subform = 1.

 WHILE l_subform LT 4.
 MOVE l_subform TO l_parent_path_c+l_parent_path_len(3).
 MOVE l_parent_path_c TO l_parent_path.
 CLEAR: subform_wa_t, wa_inb_del_item.
*
 LOOP AT subform_tab ASSIGNING <subform>
WHERE parent_path = l_parent_path.
 APPEND <subform> TO subform_wa_t.
 ENDLOOP.

 DESCRIBE TABLE subform_wa_t LINES t_lines.
 IF t_lines GT 0.

* Now we have a table of the fields in just one row.
 READ TABLE subform_wa_t ASSIGNING <subform>
 WITH KEY name = 'MATNR'.
 <bapi_import_item_wa-field> = <subform>-value.

READ TABLE subform_wa_t ASSIGNING <subform>
 WITH KEY name = ...
...

* Now append the item row to the BAPI import internal table parameter
APPEND <bapi_import_item_wa> TO <bapi_import_item>.
 endif.
 ELSE.
 EXIT.
 ENDIF.
 ADD 1 TO l_subform.
 ENDWHILE.

Once all the BAPI import parameters are filled then the BAPI is called and the results
passed back to the calling program.

File: 260 Developer Guide Page 13 of 19 17/08/2007
Author: Chris Scott

5 Output Forms

5.1 Output forms triggered by SAP application output
An interface with name /FLM/xx needs to be defined where xx is the SAP application code
(EF = purchasing, V1 = sales order etc.)

The import parameters are always:
Parameter Assignment Type name Optional flag Pass value
/1BCDWB/DOCPARAMS TYPE SFPDOCPARAMS 1 1
NAST TYPE NAST 0 1

The export parameters are always:
Parameter Assignment Type name Pass value
/1BCDWB/FORMOUTPUT TYPE FPFORMOUTPUT 1

Within the ‘Global data’ part of the interface we add the structures required to be
mapped to form fields.

Within the ‘Code Initialization’ part of the interface, we add the code to call the function
module to fill the structures defined in the global data. We export the ‘NAST’ table entry
and import the data in the structures required to map to the form. For example:

CALL FUNCTION '/FLM/FLMO_EF'
 EXPORTING
 nast = nast
 IMPORTING
 ef_po_print = ef_po_print
 EXCEPTIONS
 data_error = 1
 OTHERS = 2.

Note that recipient e-mail addresses are derived from the partner in the condition
record (passed on to table NAST)

5.2 Output forms triggered for form distribution list
For output forms to a large distribution list, use the offline form scenario with no
interactive fields. Use the e-mail user-exit to determine the distribution list.

5.3 HR output forms
PDF output forms are already integrated with HR output. Use transaction HRFORMS to
branch to the SAP Form Builder which has Adobe Designer embedded. There is no
integration with FLM.

File: 260 Developer Guide Page 14 of 19 17/08/2007
Author: Chris Scott

5.4 FI output forms
PDF output forms are already integrated with FI correspondance. Link the custom program
to the form in table T001F through view V_T001F2. Then correspondance program
RFKORI80 will use this table and generate PDF output forms. There is no integration with
FLM.

File: 260 Developer Guide Page 15 of 19 17/08/2007
Author: Chris Scott

6 Index of methods for form data handling

This section describes the other methods delivered as part of FLM that can be used for
data handling in user-exits.

6.1 Get the complete address details from an address number

/FLM/SFS=> ADRNR_TO_ADDR_COMP
IM_ADRNR TYPE ADRNR Address number
EX_ADDR_COMPLETE TYPE

SZADR_ADDR1_COMPLETE
Partner complete address

This method reads the complete address details from an address number.

6.2 Get the complete address details from a partner number

/FLM/SFS=> GET_PARTNER_ADDR_COMP
IM_PARVW TYPE PARVW Partner type
IM_PARNR TYPE PARNR Partner number
EX_ADDR_COMPLETE TYPE

SZADR_ADDR1_COMPLETE
Partner complete address

This method reads the complete address details from a partner type and number.

6.3 Get e-mail address from partner number

/FLM/SFS=>GET_PARTNER_ADDR_SMTP
IM_PARVW TYPE PARVW Partner type
IM_PARNR TYPE PARNR Partner number
EX_SMTP_ADDR TYPE AD_SMTPADR Partner e-mail address

This method reads the e-mail address from a partner type and number.

6.4 Get address from address number into single text field

/FLM/SFS=>ADRNR_TO_TEXT_FIELD
I_ADRNR TYPE ADRNR Address number
O_ADDRESS TYPE STRING Formatted address

Note that in FLM version 2.4 we do not include the country in the formatted address; this
method should be cloned if any address lines are required that are missing from the
returned address.

File: 260 Developer Guide Page 16 of 19 17/08/2007
Author: Chris Scott

6.5 Get standard text into single text field

/FLM/SFS=>READ_TEXT_TO_TEXT_FIELD
IM_TDID TYPE TDID Text ID
IM_SPRAS TYPE SPRAS Language
IM_TDNAME TYPE TDOBNAME Name
IM_TDOBJECT TYPE TDOBJECT Object
EX_TEXT TYPE STRING Output text

This method reads the contents of a standard text and concatenates them into a single
string, adding in carriage return codes at the end of each line so that the standard text is
easily formatted when bound to a form.

6.6 Prepopulate field within a subform

/FLM/SFS=>FIELD_PREPOPULATE
IM_DATA TYPE /FLM/XML_TAB_T Table type for XML table
IM_SUBFORM TYPE STRING Parent subform name
IM_ROW TYPE INT3 Parent subform row instance
IM_FIELD TYPE STRING Field name
IM_VALUE TYPE STRING Field value
EX_DATA TYPE /FLM/XML_TAB_T Table type for XML table

This methods is used for repeating subform handling within form prepopulation.

6.7 Add parent paths to form data xml table

/FLM/SFS=>DATA_ADD_PARENT_PATH
IM_DATA TYPE /FLM/XML_TAB_T Table type for XML table
EX_DATA TYPE /FLM/XML_TAB_T Table type for XML table

This method is used for repeating subform handling within posting adapters.

6.8 Get HR Personnel number from user id

/FLM/SFS=>UNAME_GET_PERNR
IM_UNAME TYPE UNAME User Name
IM_SUBTY TYPE SUBTY DEFAULT '0001' Sub type
IM_DATUM TYPE DATUM Date
IM_OBJPS TYPE OBJPS DEFAULT '' Object ID
IM_SPRPS TYPE SPRPS DEFAULT '' Lock indicator
EX_PERNR TYPE PERSNO Personnel number

The link between a user name and the personnel number is stored in info type 0105,
subtype 0001. The method does a simple selection on table PA0105.

File: 260 Developer Guide Page 17 of 19 17/08/2007
Author: Chris Scott

6.9 Get User ID from HR Personnel number

/FLM/SFS=>PERNR_GET_UNAME
IM_PERNR TYPE PERSNO Personnel number
IM_SUBTY TYPE SUBTY DEFAULT '0001' Sub type
IM_DATUM TYPE DATUM Date
IM_OBJPS TYPE OBJPS DEFAULT '' Object ID
IM_SPRPS TYPE SPRPS DEFAULT '' Lock indicator
EX_UNAME TYPE UNAME User Name

The link between a user name and the personnel number is stored in info type 0105,
subtype 0001. The method does a simple selection on table PA0105.

6.10 Get E-mail address from user id

/FLM/CORE=>GET_USER_EMAIL
IM_USER TYPE UNAME FLM: Form Owner
EX_EMAIL TYPE AD_SMTPADR FLM: Form Action

This method returns the e-mail address from a user’s default data.

6.11 Get E-mail address from HR Personnel number

/FLM/SFS=>PERNR_GET_EMAIL
IM_SUBTY TYPE SUBTY DEFAULT '0010' Sub type
IM_DATUM TYPE DATUM Date
IM_OBJPS TYPE OBJPS DEFAULT '' Object ID
IM_SPRPS TYPE SPRPS DEFAULT '' Lock indicator
IM_PERNR TYPE PERSNO Personnel number
EX_EMAIL TYPE /FLM/EMAIL_RECE E-mail address

The Link between a personnel number and their e-mail address is stored in info type 0105,
subtype 0010. This method performs a simple selection on table PA0105.

6.12 Navigate HR organisational structure

/FLM/SFS=>PERNR_GET_MANAGER
IM_PERNR TYPE HROBJID Personnel number
IM_PLVAR TYPE PLVAR DEFAULT '10' Plan Version
IM_DATUM TYPE DATUM Date
IM_PERNR_PROLE_RELAT TYPE RELAT DEFAULT '008' Relationship Between

Objects
IM_PROLE_DEPT_RELAT TYPE RELAT DEFAULT '003' Relationship Between

Objects
IM_DEPT_SROLE_RELAT TYPE RELAT DEFAULT '012' Relationship Between

Objects
IM_SROLE_SPERNR_RELAT TYPE RELAT DEFAULT '008' Relationship Between

Objects
EX_SPERNR TYPE HROBJID Manager Personnel number

File: 260 Developer Guide Page 18 of 19 17/08/2007
Author: Chris Scott

This method performs several selections on table HRP1001 passing in relationships to find
an employee’s supervisor.

Note that this works only with the structure desribed below, and a check is required
afterwards in case the employee passed in was a supervisor: in practise we may need to
clone this method depending on the organisational structure in HR.

Dept [O]

B003-> Employee role [S]
 A008-> Employee [P]

B012-> Supervisor role[S]
 A008-> Supervisor [P]

6.13 Get previous form owner

/FLM/CORE=>GET_FORM_PREV_OWNER
IM_CCODE TYPE /FLM/CUST_CODE SFS: Customer Code
IM_FTYPE TYPE /FLM/FTYPE_CODE SFS: Form Type
IM_FLANG TYPE /FLM/FLANG FLM: Form Language
IM_FVER TYPE /FLM/FVER FLM: Form Version
IM_FID TYPE /FLM/FID FLM: Form ID
IM_FID_VAR TYPE /FLM/ID_VAR FLM: Form Variant
VALUE(RE_OWNER) TYPE XUBNAME User Name in User Master

Record

This method finds the last previous form owner. It is useful for owner derivation within
workflow user-exits for rejection actions.

6.14 Get previous form actioner

/FLM/CORE=>GET_FORM_PREV_ACTIONER
IM_CCODE TYPE /FLM/CUST_CODE SFS: Customer Code
IM_FTYPE TYPE /FLM/FTYPE_CODE SFS: Form Type
IM_FLANG TYPE /FLM/FLANG FLM: Form Language
IM_FVER TYPE /FLM/FVER FLM: Form Version
IM_FID TYPE /FLM/FID FLM: Form ID
IM_FID_VAR TYPE /FLM/ID_VAR FLM: Form Variant
IM_ACTION TYPE /FLM/FACTION FLM: Form Action
VALUE(RE_OWNER) TYPE XUBNAME User Name in User Master

Record

This method finds the last previous form owner who performed a specific action. It is
useful for owner derivation within workflow user-exits for rejection actions.

File: 260 Developer Guide Page 19 of 19 17/08/2007
Author: Chris Scott

6.15 Get form name

/FLM/CORE=>GET_FORM_NAME
IM_CCODE TYPE /FLM/CUST_CODE FLM: Customer Code
IM_FTYPE TYPE /FLM/FTYPE_CODE FLM: Form Type
IM_FLANG TYPE SPRAS Language
IM_FVER TYPE /FLM/FVER FLM: Form Version
VALUE(EX_FNAME) TYPE /FLM/FNAME_L SFS: Long Form Name

This method returns the long name for a form type.

6.16 Get form current owner

/FLM/CORE=>GET_FORM_OWNER
IM_CCODE TYPE /FLM/CUST_CODE SFS: Customer Code
IM_FTYPE TYPE /FLM/FTYPE_CODE SFS: Form Type
IM_FLANG TYPE /FLM/FLANG FLM: Form Language
IM_FVER TYPE /FLM/FVER FLM: Form Version
IM_FID TYPE /FLM/FID FLM: Form ID
IM_FID_VAR TYPE /FLM/ID_VAR FLM: Form Variant
VALUE(RE_OWNER) TYPE XUBNAME User Name in User Master

Record

This method returns the current owner for a form.

6.17 Get form current status

/FLM/CORE=>GET_FORM_STATUS
IM_CCODE TYPE /FLM/CUST_CODE SFS: Customer Code
IM_FTYPE TYPE /FLM/FTYPE_CODE SFS: Form Type
IM_FLANG TYPE /FLM/FLANG FLM: Form Language
IM_FVER TYPE /FLM/FVER FLM: Form Version
IM_FID TYPE /FLM/FID FLM: Form ID
IM_FID_VAR TYPE /FLM/ID_VAR FLM: Form Variant
VALUE(RE_FSTATUS) TYPE /FLM/FSTATUS User Name in User Master

Record

This method returns the current status of a form.

